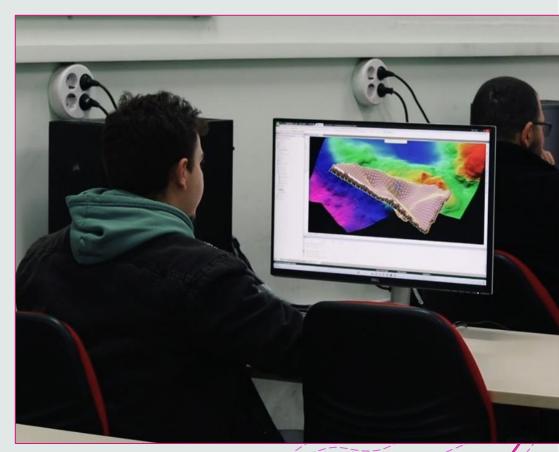
Integrated Mine Planning Education for the Modern Engineer

Ioannis Kapageridis and Kyros Koios

Laboratory of Mining Informatics and Machine Learning Applications

Mine Planning

- +The constant need for improved efficiency, safety and profitability has always been the driving force for the development and implementation of the latest technological advances in mining.
- +Mine planning has been an area that traditionally attracted new algorithms and methods to address old and new problems.
- +The importance of having trained professionals that can effectively use sophisticated mine planning software tools is largely recognised by the mining industry.



A Course in Mine Planning – Bringing Everything Together

+ As a dedicated course, it covers all aspects of mine design and scheduling with specialised computer software.

- ⁴ It is based on a series of hands-on lab exercises combined with supporting short theoretical lectures, allowing students to experience all major steps of the mine planning process in as real terms as possible.
- + It also helps students understand how the knowledge from other subjects can be combined to design and operate a mine.

MINERAL RESOURCES ENGINE

Who is it for?

Undergraduate students in:
+Mineral Resources Engineering
+Mining Engineering
+Geology
+Mine Surveying

Course Structure (1)

	Lecture	Content	Lab software-based exercise	Algorithms covered	Prerequisite modules – links to other modules
/	1	Introduction	Project setup, topographical data management	-	CAD, Geodesy
1	2	Data management	Drillhole data importing, validation and visualisation	-	Drilling Technology, GIS
	3	Model structures	Topographical surface modelling	Delaunay triangulation	Geodesy
	4	Geological modelling and control in mine planning	Simple geological modelling using drillhole lithology data	Delaunay triangulation, inverse distance, least squares, kriging, 3D solid triangulation, boolean operations, convolutional neural networks	Economic Geology, Geological Maps Interpretation and Analysis, Artificial Intelligence for Mineral Resources Engineers
	5	Resource modelling - grade estimation	Block modelling, grade estimation, resource classification	Inverse distance and ordinary kriging interpolation, cross- validation	Applied Geostatistics
	6	Open pit optimisation	Open pit optimization with the push- relabel algorithm	Push-Relabel, Lerchs-Grossman, floating cone	Surface Mining, Geotechnical and Soil Mechanics, Investment Decisions Analysis
	7	Open pit design	Open and closed bench design incorporating a ramp, following optimum limits, pit topography modelling	2D and 3D vector data projection algorithms, Delaunay triangulations, boolean operations	Surface Mining, CAD

DEPARTMENT OF MINERAL RESOURCES ENGINEERING

Course Structure (2)

Lecture	Content	Lab software-based exercise	Algorithms covered	Prerequisite modules - links to other modules
8	Underground mine design	Shafts, declines, base drives and cross-cuts design and modelling, automatic and interactive ramp design	Dubins curves method, 3D solid triangulations	Underground Mining, CAD
9	Mine scheduling	Splitting and reserving of mining blocks (per bench and pushback), calendar, destinations, equipment and targets setup, scheduling and visualisation of results	Mixed-Integer Programming, evolutionary algorithms	Operations Research, Artificial Intelligence for Mineral Resources Engineers
10	Cut-off grade optimisation	Pushbacks design, grade-tonnage curves per pushback, application of Lane's algorithm to derive optimum cut-off grades	Lane's algorithm	Surface Mining, Underground Mining
11	Haulage profile calculations	Haul truck travel time, production time, and cycle time calculation, fleet productivity estimation for long & short term planning, sensitivity analysis to road design criteria	Haulage profile equations	Surface Mining
12	Underground ventilation simulation	Ventilation network design and setup, simulation, results visualisation and analysis	Hardy Cross method	Underground Mining
13	Road and stockpile design	Horizontal and vertical IPs and alignment design, road section design and application, cut and fill slopes design, road surface modelling, stockpile design and volumetric calculations	2D and 3D vector data projection algorithms, Delaunay triangulations, boolean operations	Road Design, Surface Mining

MINERAL RESOURCES ENGINEERING

Data Importing, Validation and Visualisation

Name	Date modified
assay.csv	18/2/2023 5:5
🔊 collar.csv	18/2/2023 5:5
🖬 lithology.csv	18/2/2023 5:5
🔊 survey.csv	18/2/2023 5:5
topography.dxf	8/1/2006 11:4

μμ

ιu ш цμ

> DDFD/A7 \sim COLLAR SURVEY LITHOLOGY ASSAY FROM

1

2

3

4

5

6

7

Q

10

DDFD/A7

DDFD/A7

1

2

3

4

5

*

DDFD/A7

1 * 118.360

144.720

169.320

181.500

0.000

 \sim

0.00

0.00

COLLAR SURVEY LITHOLOGY ASSAY SDEPTH

то

144.720

169.320

181.500

248,140

0.000

BEARING

203.00

0.00

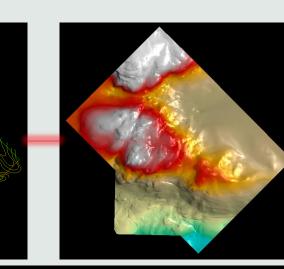
BP

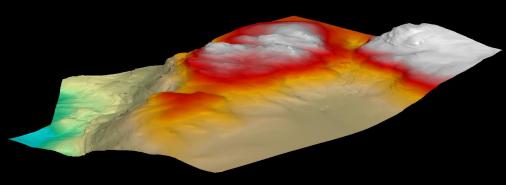
SP

MB

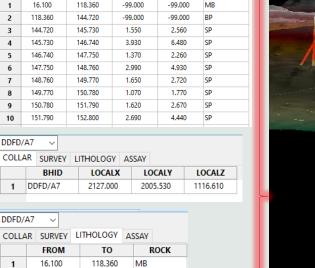
DIP

-45.00

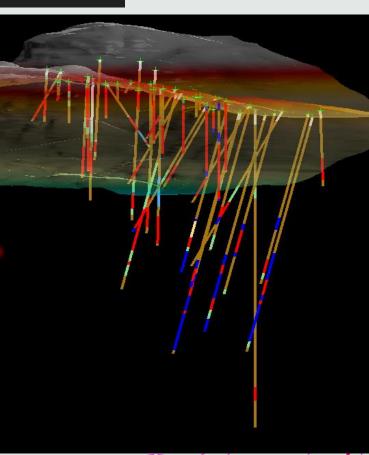

0.00


F

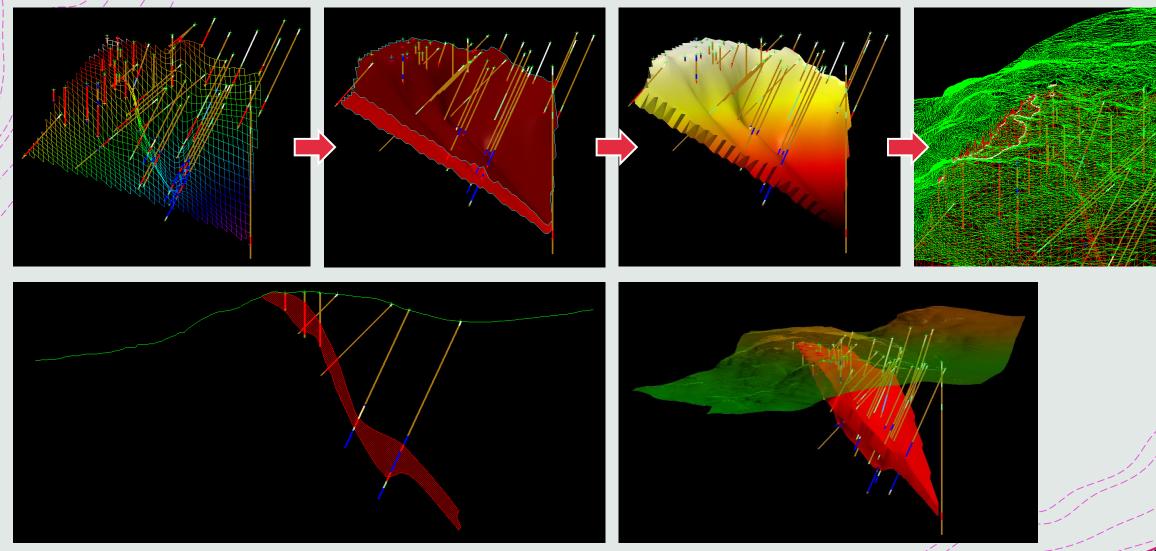
GOLD


Туре	Size
Microsoft Excel Comma Separated Values File	46 KE
Microsoft Excel Comma Separated Values File	2 KE
Microsoft Excel Comma Separated Values File	5 KE
Microsoft Excel Comma Separated Values File	1 KE
AutoCAD Drawing Interchange	2,108 KE

LITHO

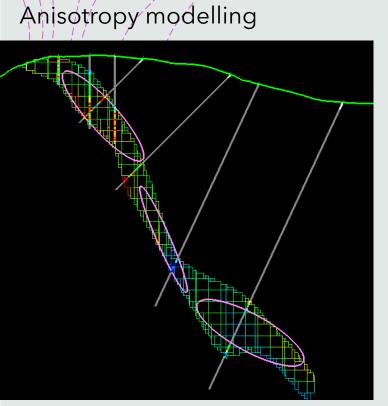


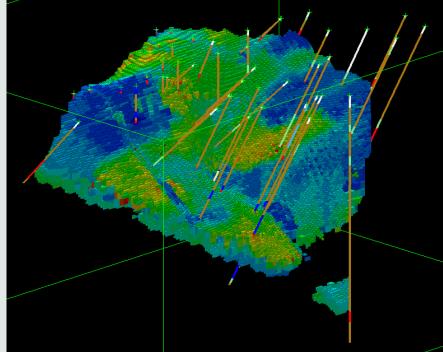
COPPER


Lab 1 - 3

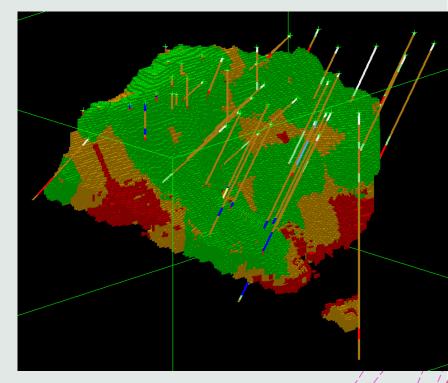
DEPARTMENT OF MINERAL RESOURCES ENGINEERING

Development of a geological model of an orebody from drillhole data and grid model interpolation



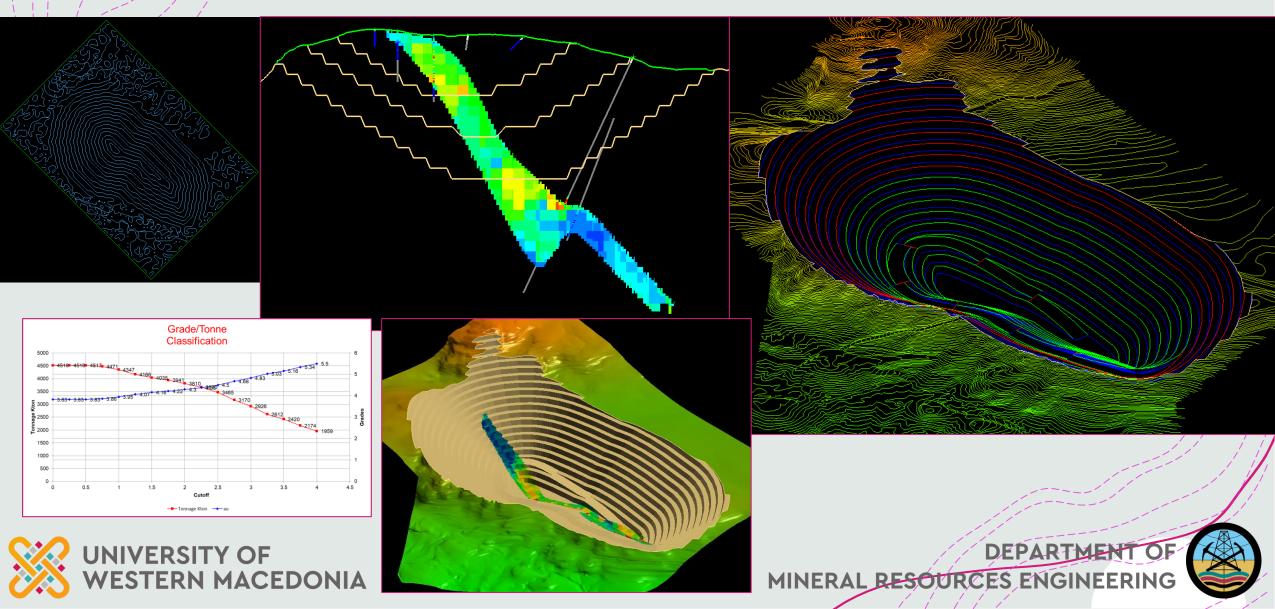


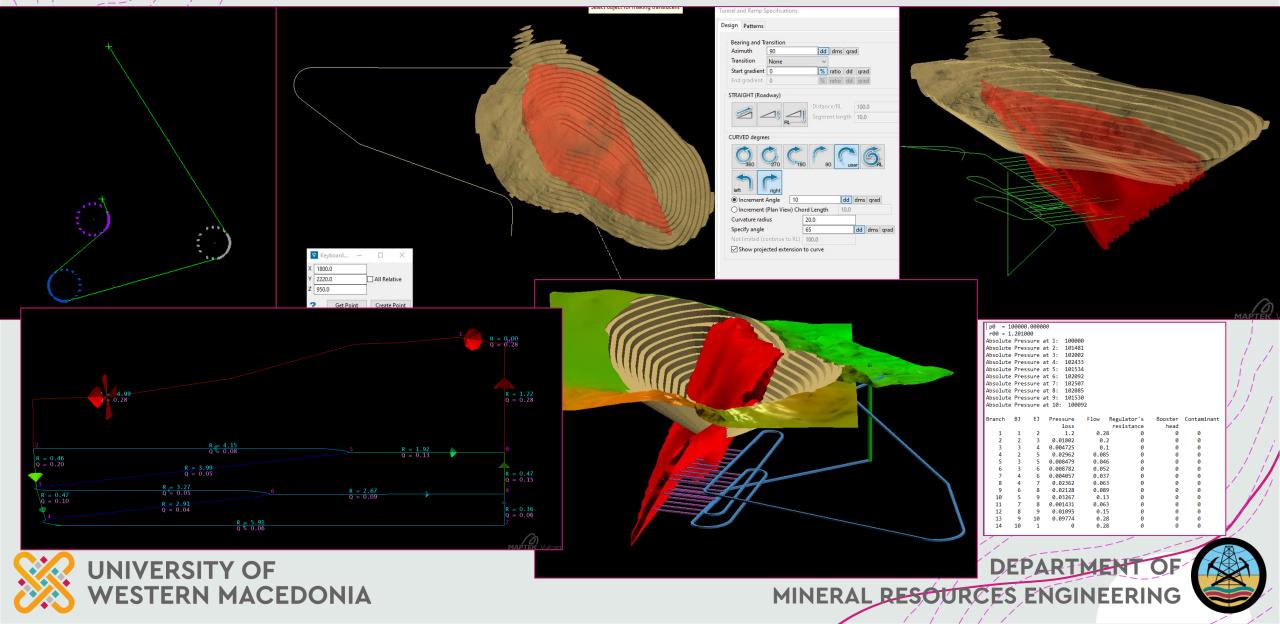
Development and estimation of a block model integrating geological, geotechnical, mining and resource information



Grade estimation

Resource Classification




Open pit optimisation using different algorithms and parameters, pushback selection and design using operational parameters, and open pit design incorporating in-pit ramps

Underground design and modelling using an automated decline design algorithm, guided base drives and cross-cuts design, ventilation network simulation

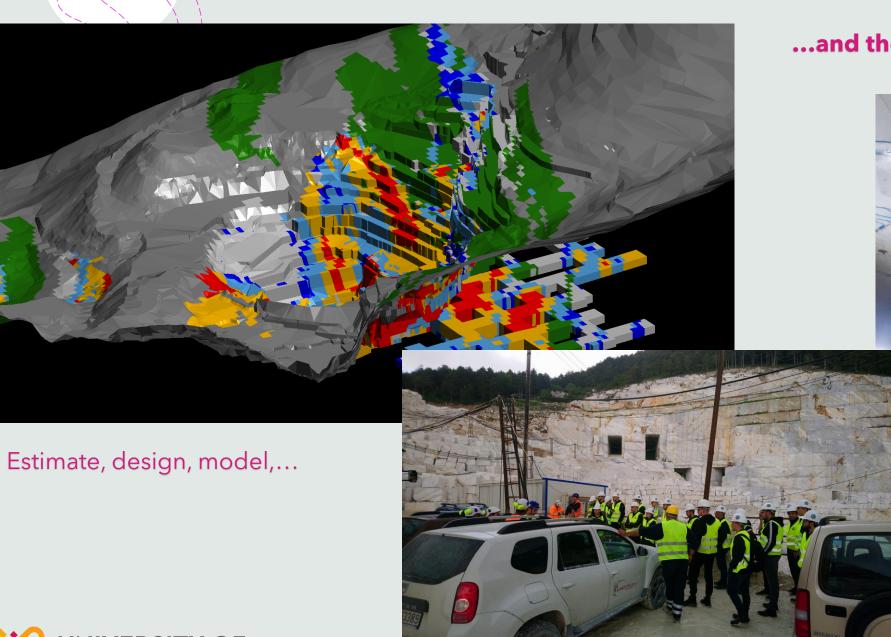
- + The mine planning course is an ideal opportunity for project-based learning.
- + Students can be organised in teams of 5-6 and undertake a mine planning study of a different deposit, with specific roles for each one (data management, geological modelling, resource modelling, pit optimisation and design, scheduling).
- + These projects can run parallel to and in sync with theoretical lectures and lab exercises, for the duration of a semester.

Opportunity for project-based learning

Benefits & Challenges

Benefits

- + Integration and reinforcement of theoretical knowledge from various areas
- + 3D visualisation of actual geological and mining entities
- + Learning of geology and mining terminology in English
- + Breakdown of a complex process (mine planning) in easy to approach sub-processes
- + Reinforcing of CAD skills in mining related tasks
- + Possible student certification from software vendor
- + Opportunity to inspire students to do research in a wide range of technology areas including AI/ML



Challenges

- Difficult to balance between learning specific software vs learning procedures and algorithms
- Time limitations
- Complex UI, computer graphics, and algorithmic terminology
- Hard to follow software progress from one version to the next
- Lack of in-depth training and reference material
- English UI and online help

DEPAR1

...and then visit!

MINERAL RESOURCES ENGINEERING

Thank you for your attention!

LABORATORY OF MINING INFORMATICS & MACHINE LEARNING APPLICATIONS DEPARTMENT OF MINERAL RESOURCES ENGINEERING - UNIVERSITY OF WESTERN MACEDONIA

