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a b s t r a c t

LavaNet is a series of scripts written in Perl that gives access to a neural network simulation environment

inside a general mine planning package. A well known and a very popular neural network development

environment, the Stuttgart Neural Network Simulator, is used as the base for the development of neural

networks. LavaNet runs inside VULCANTM—a complete mine planning package with advanced database,

modelling and visualisation capabilities. LavaNet is taking advantage of VULCAN’s Perl based scripting

environment, Lava, to bring all the benefits of neural network development and application to geologists,

mining engineers and other users of the specific mine planning package. LavaNet enables easy

development of neural network training data sets using information from any of the data and model

structures available, such as block models and drillhole databases. Neural networks can be trained inside

VULCANTM and the results be used to generate new models that can be visualised in 3D. Direct comparison

of developed neural network models with conventional and geostatistical techniques is now possible

within the same mine planning software package. LavaNet supports Radial Basis Function networks,

Multi-Layer Perceptrons and Self-Organised Maps.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

A number of mining planning related problems have been
approached using artificial neural network (ANN) technology in the
last couple of decades. These problems commonly relate to pattern
classification, prediction and optimisation. ANNs have been success-
fully applied to these particular areas and appear suitable for similar
mining and environmental problems (Kapageridis, 2002). The general
trend in the mining industry for automation to the greatest degree
calls for technologies such as ANNs that can utilise large amounts of
data for the development of models which, otherwise, are very
difficult or sometimes even impossible to construct.

One particular area where ANNs have been applied in the mine
planning sector is in spatial analysis problems. Exploration and
resource estimation commonly involves the prediction of various
parameters characterizing a mineral deposit or a reservoir. The input
data usually come in the form of samples with known positions in 3D
space. The majority of the ANN systems developed for these
predictive tasks are based on the relationship between the modelled
parameter and sample location. The most common practice when
developing training patterns sets for an ANN, is to generate input–
output pairs with the input being the sample location and the desired

output being the value of the modelled parameter at that location. In
other words, most of the ANN systems treat the modelling of the
unknown parameters as a problem of function approximation in the
sample coordinates space.

Some other systems go a step further to exploit information
hidden in the relationship between neighbouring samples
(Kapageridis, 1999, 2003, 2005). The estimation of a parameter
at a specific location in 3D space, in this case, depends on
information from samples around that location. Regardless of
the approach, a common obstacle in developing neural network
solutions to mining problems is the development of appropriate
data sets that can be used for neural network training as well as the
transfer of neural network application results into the mine
planning process. The neural network development environment
described in this paper addresses these problems and provides a
platform for fast and comprehensive development of neural net-
work models within a general mine planning package.

1.1. VULCAN 3D software and Lava scripting

A number of general mine planning packages exist today with
varying capabilities and functionality. These packages host a large
number of algorithms for analysis and modelling of geological and
other spatial data. They commonly use special database structures
for storing data. Models produced by these packages are also stored
in special file structures that cannot be opened directly by other
more generic packages for further analysis and usage. VULCANTM is
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one of these general mine planning packages that has been around
since the early 1980s produced by Maptek Pty Ltd. In its current
form it has several modules covering most aspects of mine planning
for any type of mining.

Envisage is the heart of the VULCANTM software package. It
provides a full 3D environment for the design and digitising of
vector data and for modelling using a number of different model
structures and algorithms. Extensive vector data editing and
manipulating options are part of the core Envisage system. Envisage
allows importing and exporting vector data from formatted data
files or connected measurement equipment. Envisage is used both
at mine sites and in feasibility work where geologists, engineers,
surveyors and other users all work in a common environment.

It is very common in mine planning packages to integrate a
scripting language that allows automation of repetitive tasks and
the extension of built-in functionality of the software. Lava is a
module for a version of the popular scripting language Perl
(Schwartz et al., 2008) that is built into VULCANTM. This version
of Perl behaves exactly like the standard Perl version (5.6.1), except
that certain functions, which can directly access Envisage internals,
have been added. The syntax required to access these functions is
provided through the Lava package. Lava uses many object/class
structures to modularise and confine the details of the implemen-
tation of various Envisage tasks, as well as a few general functions
that may be accessed without a class. There are three types of
classes, Lava classes (which can only be used inside Envisage),
Vulcan classes (which do not require the Envisage 3D environment
to be used) and the Triangulation class, which like the Vulcan
classes, can also be used outside of Envisage (Table 1). Generally,
class names are prefixed with ‘Lava::’ or ‘vulcan::’ and have the first
letter in each word capitalised, similarly for the general Lava
functions. The class data, and functions thereon, are accessed
through the member functions, which have lowercase names,
and are typically called by dereferencing an instance of a class.
LavaNet uses a number of these classes to gain direct access to
Vulcan file and model structures. LavaNet windows and dialog
boxes are also based on Lava classes.

1.2. Stuttgart Neural Network Simulator

The Stuttgart Neural Network Simulator (SNNS) is a well
developed and complete environment that has been around since
early 1990s. It is a multiplatform package that allows development

of artificial neural network systems using a wide variety of
topology architectures and training algorithms (SNNS User’s
Manual, 1996). It provides an X-Windows graphical user interface
that is identical on all platforms. A Java based version of SNNS called
JavaNNS is also available. The original X-Windows version comes
complete with a batch development language called Batchman. The
LavaNet interface presented in this paper utilises this tool for the
development and application of neural network systems from
within VULCANTM. The current (4.3) and previous versions of SNNS
can be downloaded for free and be used on different operating
systems including Linux and Microsoft WindowsTM.

2. General description of the interface

As already mentioned, LavaNet consists of a number of scripts
that, once copied in VULCANTM installation directory, can be accessed
from Envisage as a menu option or through the provided toolbar. The
scripts run and behave as any other Envisage option and the user has
no feeling of the script interpretation process that takes place in the
background. Interpretation time is normally less than a fraction of a
second in modern hardware. The toolbar groups LavaNet options in
separate menus according to their purpose as shown in Fig. 1. The
user can determine the project name and network topology archi-
tecture through the setup options. Training, validation and applica-
tion patterns can be generated through the Pattern menus using any
of the data and model structures used by VULCANTM. Development of
the network follows, which can be performed in multiple training
stages. For example, in the case of an RBF network, there can be
separate training stages for fixing the RBF centre locations, RBF
receptive fields and weights to the output layer(s). These stages can
be combined in a single batch development script that can be used
more than once. Finally, the results from running a developed
network can be imported through the Results menu.

Fig. 2 presents the way Envisage, LavaNet and SNNS work
together. LavaNet reads the information stored in databases and
models in Envisage and generates SNNS formatted pattern, net-
work and Batchman development script files. Networks are devel-
oped by Batchman using the LavaNet prepared scripts and then
applied to produce results using application patterns produced by
LavaNet. Finally, LavaNet reads the results and writes them into a
VULCANTM database or model.

As LavaNet is further developed, more options will become available
and will be added to the provided toolbar. These options will take

Table 1
Types of classes included in the Lava package for Perl.

Type Class Functionality

Lava Lava::Panel Used to create Envisage panels for acquiring specific information from the user

Lava::Obj Used to represent any design database object

Lava::Links Encapsulates an array of link records that may be associated with an Envisage object

Lava::Coord Encapsulates an array of coordinate records

Lava::Text Encapsulates an array of text data, as well as various text attributes

Lava::Selection Manages the prompting, selection, highlighting, loading and replacing of Envisage objects

Lava::Layer Used to create or select a layer, into which new objects may be added

Lava::Point Used to input 3D data from the user, using the standard Envisage digitising methods

Lava::TriSelection Used to select triangulations from the Envisage display

Lava::Contourer Used to contour triangulations

Lava::gfx::window Used to access a graphics window

Lava::Show Used to display messages while an operation is performed

Lava::Message Used to display a message panel with an OK button to close it

Vulcan Vulcan::block_model Used to access a new or existing block model file

Vulcan::isisdb Used to access a new or existing ISIS database

Vulcan::grid Used to access a new or existing grid model file

Vulcan::mapio Used to access a new or existing formatted MAP file

Vulcan::triangulation Used to access a new or existing triangulation model file

Triangulation Provides an interface to Envisage triangulation structures
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advantage of future developments in Lava scripting and Perl as well as
further developments to VULCANTM data and model structures.

3. Network topology specification

LavaNet is based on SNNS and, therefore, uses the particular
network structures and algorithms provided by this simulator.

Currently three network models are implemented in LavaNet—
Multi-Layer Perceptrons (MLP), Radial Basis Function Networks
(RBFN) and Self-Organising Maps (SOM). Table 2 presents the
various network models and functions supported by LavaNet.
Networks can be designed with particular input, hidden and output
nodes and specific initialisation, learning and updating functions as
in SNNS. Network specification differs depending on the network
model used as shown in Fig. 3. These panels are meant to be

Fig. 1. LavaNet menu structure and toolbar within Envisage.

Fig. 2. Information flow between Vulcan, LavaNet and SNNS during neural network development and application.
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complimentary to the original SNNS environment—LavaNet can
receive any SNNS compatible network file and use it for develop-
ment and application. Network and pattern files developed through
LavaNet can also be examined, analysed and further developed in
the SNNS or JavaNNS environment. A brief introduction to the
network models supported by LavaNet is given in the following
sections.

3.1. Multi-Layer Perceptrons

Beyond any doubt the most popular and widely used neural
network structure, the Multi-Layer Perceptron (also known as

feed-forward network) is a hierarchical design consisting of fully
interconnected layers of processing elements (Haykin, 1999).
Generally the operation of this network is mapping an n-dimen-
sional input to an m-dimensional output, in other words modelling
of a function F: Rn-Rm. This is achieved by means of training on
examples (x1,y1), (x2,y2),y,(xk,yk) of the mapping, where yk¼ f(xk).
MLP networks are commonly used together with an error correc-
tion algorithm such as gradient descent, or conjugate gradient
descent. The structure of the MLP network comprises a number of
layers of processing elements. There are three types of layers
depending on their location and function: input, hidden and
output. The connections between the layers are generally feed-
forward during presentation of an input signal. However, during

Table 2
Network initialisation, learning and updating functions supported by the LavaNet interface.

MLP RBF SOM

Initialisation
functions

Randomize_Weights, Random_Weights_Perc, CPN_Weights_v3.2,

CPN_Weights_V3.3, CPN_Rand_Pat

Randomize_Weights, RBF_Weights,

RBF_Weights_Kohonen, RBF_Weights_Redo

Kohonen_Rand_Pat,

Kohonen_Weights_v3.2,

Kohonen_Const

Learning
functions

BackPercolation, BackpropBatch, BackpropChunk, BackpropMomentum,

BackpropWeightDecay, Counterpropagation, Quickprop, Rprop,

Std_Backpropagation

RadialBasisLearning, RBF-DDA Kohonen

Updating
functions

Topological_Order, Auto_Synchronous, Random_Order,

Random_Permutation, Serial_Order, Synchronous_Order

Topological_Order, Auto_Synchronous,

Random_Order, Random_Permutation,

Serial_Order, Synchronous_Order

Kohonen_Order

Fig. 3. Panels for choosing network architecture and functions.
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training the network allows the back-propagation of error signals
to the hidden units in order to adjust the connection weights. Feed-
forward networks may have more than one hidden layers. Extra
hidden layers allow more complex mappings but also require more
information for training of the network. The choice is usually
between an excessive number of processing elements in one
hidden layer and a low number of processing elements but in
more than one hidden layer.

An example of a MLP based system for ore grade/reserve
estimation was developed by Wu and Zhou (1993). The Multi-
Layer Perceptron in this example had four layers: an input layer,
two hidden layers, and one output layer. The network received two
inputs, the Easting and Northing of samples. The two hidden layers
were identical and had 28 units each. It was a relatively large
network considering the dimension of the input space (2D). The
developers have used a fast learning algorithm called the Dynamic
Quick-Propagation (Wu, 1991) that is based on the quick-propaga-
tion algorithm (Fahlman, 1988) and a system for the determination
of the hidden layer size called Dynamic Node Creation (Ash, 1989).
Similar to the above network, is the ANN developed by Yama and
Lineberry (1999), which was based again on the MLP architecture
but used the original back-propagation learning algorithm. Clarici
et al. (1993) described a similar approach of a single hidden layer
network. Cortez et al. (1998) presented a hybrid system combining
ANN technology with geostatistics for grade/resources estimation.
Their system, called NNRK (‘Neural Network estimation of the drift
and Residuals’ Kriging’), is based on a network with 3 inputs
(the sample’s X, Y, Z coordinates), 6 hidden units and one output,
the respective Zn assay. Garcia and Whitman (1992) have used a
MLP trained using back-propagation for the inversion of lateral
electrode well logs. The data used for training the network were
derived from a finite difference method that simulated the lateral
log. The trained network was tested using real data and the results
were compared with those from an automated inversion model. In
a similar fashion, Rogers et al. used a MLP network for the
prediction of lithology from well logs (Rogers et al., 1992).

3.2. Radial Basis Function networks

Radial Basis Function Networks (RBFNs) are powerful network
structures which construct global approximations to functions
using combinations of Radial Basis Functions (RBFs) centred on
weight vectors (Lowe, 1995; Moody and Darken, 1989; Park and
Sandberg, 1993). The basic RBFN structure consists of non-linear
basis functions centred on each hidden node weight vector. Hidden
nodes have an adaptable range of influence or receptive field. The
output of the hidden nodes is a radial function of the distance
between each pattern vector and each hidden node weight vector.

Learning in RBF networks leads to the construction of a hyper-
surface in multi-dimensional space that fits the training data in the
best possible way. Function approximation and pattern classifica-
tion are the main areas of application RBF networks. One of their
main advantages lies in their strong scientific foundation. RBFs
have been motivated by statistical pattern processing theory,
regression and regularisation, biological pattern formation, and
mapping in the presence of noisy data (Powell, 1987, 1992).

For an RBF network to be able to receive training samples and
function as a hyper-surface reconstruction network, a number of its
parameters need to be calculated. These parameters include the
following:

� The number of RBFs.
� The centres of the hidden layer RBFs.
� The receptive fields or widths of RBFs.
� The weights between hidden and output layer.

Each parameter should be fixed separately through an appro-
priate training stage. LavaNet can be used to formulate each
training stage separately using the RBF learning algorithms in
Table 2.

RBF networks have been successfully used in mining and
geospatial problems in the past. Caiti and Parisini (1991) have
used RBF networks to interpolate geophysical properties of ocean
sediments, e.g. porosity, density and grain size. Kapageridis (1999)
has used RBF networks in a modular system for grade estimation.
Samanta and Bandopadhyay (2009) have used RBF networks and an
evolutionary algorithm for grade estimation in a placer gold
deposit.

3.3. Self-organising maps

Self-organising maps (SOMs) are a special class of the unsu-
pervised ANNs group. SOMs were developed by Kohonen (1984,
1995). The learning process applied to these networks follows the
competitive learning paradigm. SOMs construct topology-preser-
ving mappings of the input data in a way that the location of a
processing element carries semantic information. The SOM can be
considered as a specific type of clustering algorithm. A large
number of clusters are chosen and arranged on a square or
hexagonal grid in one or two dimensions. This grid is in essence
a lattice of processing elements of the SOMs single computational
layer. Input patterns representing similar examples are mapped to
nearby nodes of the grid.

There have been multiple applications of SOMs to mining related
problems in the past. A system consisting of SOMs and an expert
system was developed for the evaluation of coal mine roof supports
(Signer and King, 1992; King et al., 1993). Millar et al. used self-
organising networks to model the complex behaviour of rock
masses by classifying input variables related to the rock stability
into two groups: failure or stability (Millar and Hudson, 1993).
Petersen and Lorenzen (1997) applied the SOM to the modelling of
gold liberation from diagnostic leaching data. Walter (1999) used
SOMs for the classification of mine roof strata into one of 32 strength
classes. The developed system can provide an estimate of strength
within two seconds giving the drill operator a warning almost in
real time when a potentially dangerous layer is reached.

4. Pattern development

4.1. Data sources

Probably the most important aspect of LavaNet is the pattern
generation options. One of the common time consuming issues in
neural network development is the generation of training and
validation patterns from existing data sources such as drillhole
databases, triangulation models, block models, formatted data files
and vector data in a format compatible with neural network
development software. LavaNet can handle any of the available
data sources in VULCANTM and practically covers any possible
sources of information in a general mine planning package. Each
data source, whether it is a database or a model, normally hosts a
number of variables or parameters, such as coordinates, assay
values, rock codes, etc. These can be numerical or alphanumerical
depending on what the variable represents. Using LavaNet Direct
Patterns options, and depending on the number of inputs and
outputs defined through network setup, any of the available
variables from a particular data source can be assigned as an input
or an output. Fig. 4 shows a particular example where a composite
map file (formatted) is used as the source for pattern information.
The network architecture has three inputs and one output. The
composite sample coordinates (MIDX, MIDY and MIDZ) are chosen
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as the network’s inputs and Au grade is used as the output. The
pattern file to be generated in this example is for training purposes
and all values are normalised. LavaNet reads and writes pattern
files in SNNS format.

The number of inputs and outputs is normally controlled by the
network architecture. However, certain data sources have a very
specific dimensionality, such as grid models where only three
parameters are available—the two coordinates for each node and
its value (Table 3). This must be considered before defining the
network architecture. VULCANTM provides a number of ways to
combine information from multiple sources in a single model or
file, so data source variable limitations should not be a problem for
users of LavaNet.

LavaNet can generate pattern files for network development
and application either by direct usage of data source parameters or
through searching in 2D or 3D space for sample pairs. Search
patterns can be generated by searching the data source for sample
pairs in the space defined by user selectable dimensions.

4.2. Direct patterns

Direct patterns can be formed by converting the information
contained in a layer, triangulation, grid or any of the data sources
into patterns. In case of a triangulation, for example, each node will
produce a pattern consisting of three parameters—the node
coordinates. Information from multiple models or databases can
be combined using already existing Envisage functionality. Typi-
cally, a database will be the source of information for the genera-
tion of training and validation patters, while a model structure can
provide the desired application (run) patterns. For example, a
drillhole database can provide training and validation patterns
using any of the sample variables, while a block model can provide
the application patterns. It is important, in this case, that both share
the same input and output space.

4.3. Search patterns

In addition to direct patterns derived by straight conversion of
available dimensions from each model structure or database, LavaNet
can help explore the relationship between database samples and/or
model nodes through the calculation of distance and direction
between them, either in two or three dimensional space (Fig. 5).
The actual dimensions used in calculating distance and direction
between samples or nodes can be anything from standard coordinates
to assay values. In other words, searching can be performed in spaces
other than the 2D or 3D coordinates space. Distance and direction are
included as inputs in the patterns generated. A neighbour point
support variable (such as sample volume) can also become a third
input in each pattern. The choice of model input variable also defines
the output variable for training and validation patterns. For example,
if search patterns are generated for a drillhole database and a
particular assay field is chosen as model input variable, then the
assay field value of a neighbour sample will be used as one of the
inputs, while the assay field value at the search centre will be used as
the single output. A full pattern, in this case, would be as follows:

Inputs
Distance between neighbour and search centre sample (if

selected)
Direction between neighbour and search centre sample (if

selected)
Neighbour sample support field value (if selected)
Neighbour sample assay field value
Output
Search centre assay field value

Therefore, search patterns can have a maximum of four inputs
and one output. LavaNet also provides the facility to split searchFig. 4. Example of training pattern generation using a map file as a source of data.

Table 3
Data sources and available parameters for network inputs and outputs.

Data source Inputs description Inputs count Outputs description Outputs count

MAP file Sample coordinates, sample volume,

assays, codes, etc.

Unlimited Sample coordinates, sample volume,

assays, codes, etc.

Unlimited

CSV file Sample coordinates, sample volume,

assays, codes, etc.

Unlimited Sample coordinates, sample volume,

assays, codes, etc.

Unlimited

ISIS database Sample coordinates, sample volume,

assays, codes, etc.

Unlimited Sample coordinates, sample volume,

assays, codes, etc.

Unlimited

Triangulation model Node X, Y coordinates 2 Node Z coordinate 1

Block model Block centroid coordinates, volume,

variables

Unlimited Block centroid coordinates, volume,

variables

Unlimited

Grid model Node X, Y coordinates 2 Node Z coordinate 1

Vector data Point X, Y or X, Y,Z coordinates 2 or 3 Point Z, Wa value 1

a W is an extra parameter that Envisage stores in each point in addition to the standard XYZ coordinates and point name, and can be used to store numerical information.
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patterns by sectors allowing quadrant, octant or any other sector
based search to be performed. Search patterns can then be split into
multiple pattern files, one for each sector. This is important if a
modular neural network is to be developed for modelling the
selected output variable, similar to the GEMNet II (Kapageridis,
1999) neural network based grade estimation system.

4.4. Normalisation

LavaNet has the ability to normalise data between an upper and
lower bound. Each sample of data is multiplied by an amplitude value
and shifted by an offset value. The amplitude and offset are referred
to as normalisation coefficients. These coefficients are computed per
input and output, meaning that there is a unique amplitude and
offset value for each input and output. The coefficients are stored in a
normalisation file named after the pattern file name and a .txt
extension within the working area directory of Vulcan.

Normalisation coefficients are computed based on the minimum
and maximum values found across all data in the selected data
source. As one data source may be used for training and validation,
and another be used for running the trained network, it is important
to generate and use the normalisation file from the data source with
the greater extents in the given input and output spaces. For
example, if a drillhole database is used as the data source for
training and validation, and a block model that includes spatially all
drillholes is used for running the network then the block model
normalisation file should be used to normalise training, validation
and run pattern files. This will guarantee that all of the patterns of the
selected data sources will fall between the upper and lower bounds.

The normalisation file is also used by LavaNet to de-normalise
the network data, i.e. to put it in terms of the original data. The
inverse of the amplitude and offset is applied to each input and
output before writing the data. LavaNet normalisation files contain
the following ASCII data per input/output parameter:

amplitude_input1 offset_input1 minimum_input1 max-

imum_input1

amplitude_input2 offset_input2 minimum_input2 max-

imum_input2

^
amplitude_outputn offset_ outputn minimum_ outputn

maximum_ outputn

The number of rows in the file corresponds to the total number of
inputs and outputs, i.e. for a pattern file with three inputs and one
output there will be four rows of normalisation coefficients. Input
coefficients are listed first. These coefficients are calculated using the
following formula:

AmplitudeðiÞ ¼ ðUpperBound�LowerBoundÞ=ðMaximumðiÞ�MinimumðiÞÞ

OffsetðiÞ ¼UpperBound�AmplitudeðiÞ�MaximumðiÞ

where Maximum(i) and Minimum(i) are the maximum and minimum
values found within input/output i, and UpperBound and LowerBound

are the values used as the limits of normalised values. Values 0.1 and
0.9 are hard-coded as the Upper and Lower bounds. The pattern
generation options normalise data using the following formula:

DataðiÞ ¼ AmplitudeðiÞ�DataðiÞþOffsetðiÞ

The results options use the following formula to de-normalise
the data:

DataðiÞ ¼ ðDataðiÞ�OffsetðiÞÞ=AmplitudeðiÞ

LavaNet also provides the ability to generate a normalisation
file using user defined upper and lower bounds. This is important
when the training, validation and application patterns have
different input and output space limits. The user can find the
universal minimum and maximum of all patterns (using standard
Envisage functions) and use them in LavaNet to generate a normal-
isation file that will be used to normalise and de-normalise all
pattern files.

5. Network development and application

5.1. Network initialisation

Network development is a multiple stage process in LavaNet.
After the generation of the undeveloped network file, the network
is initialised using one of the available initialisation functions in
LavaNet (Table 2). Initialisation is important as it provides the
starting point for further development of the network, by giving
appropriate values to the free parameters of the network (initial
weights, biases, function centres, etc.)

Fig. 5. Defining patterns by searching in 2D or 3D.
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Fig. 6. Network training and validation panel with choice of pattern files, learning parameters and training termination criterion.

Fig. 7. Importing results of neural network application to a block model variable with de-normalisation and block centroid association.
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5.2. Network training

After initialisation, the network can be trained using an appro-
priate learning function (Table 2), depending on the type of network.
LavaNet provides the ability to split the training pattern file to two
subsets that will be used for training and validation (Fig. 6). This can
be done with training patterns first and validation last or evenly. The
percentage used for each subset is also defined by the user.

Termination of training can be based on one of the four criteria
provided by SNNS (sum or mean of squared error, sum of squared
error per unit or number of training cycles). LavaNet can store the
network state that produces the lowest mean squared error (MSE)
when termination is based on cycles, e.g. the network can be trained
for 10,000 cycles but MSE was lowest at 7500 leading to LavaNet
saving the network state at that point and not at the end of training. As
all network development actions in LavaNet are stored in Batchman
compatible script files, the user can combine them using a text editor
to further automate the development process once it is finalised.

5.3. Network application

In order to use a trained network, it is necessary to first generate an
application pattern file. This file contains only inputs that can be
normalised using the coefficients fixed before training. It is clearly
important to use the same normalisation used during training to assure
that the network receives application inputs in the same range and
scale with the training examples and that the generated outputs will
also be able to get properly de-normalised. The output from neural
network application comes in the form of a standard SNNS results file
(with a .res extension) that can be imported to a Vulcan model or layer,
or be used as training pattern for further neural network development.

6. Results importing and further processing

Currently, LavaNet can import results from network application
in two forms—as a vector data layer and in block model variables.
Once results are imported to a vector data layer, they can be directly
converted to a model using any of the modelling procedures
available in VulcanTM, such as grid and triangulation modelling.
The example shown in Fig. 7 demonstrates how particular block
model variables can be populated using results from network
application. The association of particular blocks with result file
records is achieved through 3D coordinates that need to be
identified in the result file input parameters. Before this association
is established, the result file input parameters need to be de-
normalised to bring them back to the original block model
coordinate system. Outputs from the results file also need to be
de-normalised before importing to a layer or block model variable.

7. Application examples

In the following sections, the flexibility of LavaNet is demon-
strated using two examples: modelling in two dimensions
(grid and triangulation models), and quality estimation in
three dimensions (block model). However, LavaNet can be used
for any samples classification (both supervised and unsupervised)
or spatial interpolation problem in mine planning.

7.1. 2D modelling example

The first example is a simple 2D application of a MLP network for
the construction of a mineable thickness model of a lignite deposit.
Mineable thickness was evaluated in each drillhole available and a
pattern file is generated with two inputs, the X and Y coordinates of

the drillhole, and one output, the mineable lignite thickness. Part of
the SNNS pattern file built by LavaNet using the drillhole database
thickness information is shown in Fig. 8. Each pattern consists of
two lines, the first giving the inputs and the second giving the
output (both normalised).

The pattern file was split 60–40% for training and validation. The
network was first initialised and then trained using the script that

SNNS pattern definition file V1.4 
generated at Thu Jun 22 15:01:23 2006 

No. of patterns  : 1656  
No. of input units  : 2 
No. of output units : 1 

# Pattern 631 
0.536582871292458 0.35064173900141
0.420175631174534

Fig. 8. Example of pattern file generated by LavaNet with normalisation of inputs

and output.

loadNet("init_cotk.net")

loadPattern("lavanet_trn.pat")

loadPattern("lavanet_vln.pat")

setPattern("lavanet_trn.pat")

min_error = 1 

setShuffle (TRUE) 

setLearnFunc("BackpropMomentum", 0.01, 0.2, 0, 0.01)

setUpdateFunc ("Topological_Order") 

repeat

for i:=1 to 500 do 

trainNet () 

end for 

setPattern ("lavanet_vln.pat") 

testNet() 

if min_error > MSE then 

min_error = MSE 

saveNet("train_init_cotk.net")

print ("Best MSE = ", MSE)

end if 

criterion := CYCLES 

print ("Cycles=",CYCLES,"CYCLES=",CYCLES)

setPattern ("lavanet_trn.pat") 

until criterion >= 20000 

Fig. 9. Batchman training script generated by LavaNet.

Fig. 10. Model of mineable lignite thickness built using LavaNet.
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was generated by LavaNet (Fig. 9). Training lasted 20,000 cycles
while the network’s performance was validated every 500. The best
network state according to MSE was saved to a separate network
file. This network was used to generate a grid model of mineable
lignite thickness using the appropriate LavaNet options. A separate
application pattern file was generated for this, using an existing
grid model to provide the inputs for network application. Fig. 10
shows the produced model of lignite thickness.

7.2. Block model estimation example

In this second example, an RBF network is used to estimate WO3

grade of a tungsten deposit in 3D (X, Y, Z coordinates as inputs).
Drillhole composite data are used to generate the pattern files to
train and validate the network, while a block model is used to
generate the application pattern file. The development of the
network is similar to the previous example—the initialisation,
learning and updating functions differ as a different type of
network is now used. The trained network is applied on the block
model pattern file and the results are de-normalised and imported
back into the block model. Fig. 11 shows a section through the block
model coloured by WO3 estimates of the LavaNet RBF network.

8. Conclusions and further work

LavaNet is an interface to a neural network development
environment, built inside a general mine planning package, which
allows quick and effortless development and application of arti-
ficial neural networks for mining and environmental problems.
LavaNet is constantly under development with further options and
functionality being added that take advantage of new capabilities
provided by new versions of Vulcan’s LAVA scripting language,
including extensions to the graphical user interface, model struc-
tures and data sources.
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