
3rd AMIREG International Conference (2009): Assessing the Footprint of 200
Resource Utilization and Hazardous Waste Management, Athens, Greece

LavaNet - a neural network modelling toolkit for mine planning and
environmental modelling

I.K. Kapageridis
Laboratory of Mining Information Technology and GIS Applications, Department of Geotechnology
and Environmental Engineering, Technological Educational Institute of Western Macedonia, Greece

ABSTRACT
LavaNet consists of a series of scripts written in
Perl that give access to a neural network simula-
tion environment inside a general mine planning
package. LavaNet enables easy development of
neural network training datasets using informa-
tion from any of the data and model structures
available, such as block models and drillhole
databases. Neural networks can be trained inside
the mine planning environment and the results
be used to generate new models that can be
visualised in 3D. Direct comparison of devel-
oped neural network models with conventional
and geostatistical techniques is now possible
within the same environment. LavaNet supports
Radial Basis Function networks, Multi-Layered
Perceptrons and Self-Organised Maps. The
flexibility of LavaNet in developing neural net-
work based models and its integration with the
mine planning environment is demonstrated us-
ing two different examples: a geological struc-
ture model and a 3D block model attribute esti-
mation.

1. INTRODUCTION
A number of mining planning related problems
have been approached using artificial neural
network (ANN) technology in the last couple of
decades. These problems commonly relate to
pattern classification, prediction and optimiza-
tion. The general trend in the mining industry
for automation to the greatest degree calls for
technologies such as ANNs that can utilize large
amounts of data for the development of models
which, otherwise, are very difficult or some-
times even impossible to construct.

One particular area were ANNs have been
applied in the mine planning sector is in spatial
analysis problems (Kapageridis, 2002). Explora-
tion and resource estimation commonly involves
the prediction of various parameters characteriz-
ing a mineral deposit or a reservoir. Input data
usually come in the form of samples with
known positions in 3D space. The most com-
mon practice when developing training patterns
sets for an ANN, is to generate input-output
pairs with the input being the sample location
and the desired output being the value of the
modeled parameter at that location. Some other
systems go a step further to exploit information
hidden in the relationship between neighboring
samples (Kapageridis, 1999, 2005). The estima-
tion of a parameter at a specific location in 3D
space is, in this case, depending on information
from samples around that location.

Regardless of the approach, a common ob-
stacle in developing neural network solutions to
mining problems is the development of appro-
priate data sets that can be used for neural net-
work training as well as the transfer of neural
network application results back into the mine
planning process. The neural network develop-
ment environment described in this paper ad-
dresses these problems and provides a platform
for fast and comprehensive development of neu-
ral network models within a general mine plan-
ning package.

2. LAVA SCRIPTING AND THE STUTT-
GART NEURAL NETWORK SIMULATOR

2.1 Integration with Vulcan
It is very common in mine planning packages to

3rd AMIREG International Conference (2009): Assessing the Footprint of 201
Resource Utilization and Hazardous Waste Management, Athens, Greece

integrate a scripting language that allows auto-
mation of repetitive tasks and the extension of
built-in functionality of the software. Lava is a
module for a version of the popular scripting
language Perl that is built into VULCAN™.

LavaNet consists of a number of scripts that,
once copied in the VULCAN™ installation di-
rectory, can be accessed as a menu option or
through the provided toolbar. The scripts run
and behave as any other standard option and the
user has no feeling of the script compilation
process that takes place in the background. The
toolbar groups LavaNet options depending on
their purpose as shown in Figure 1. The user can
determine the project name and network topol-
ogy architecture through the setup options.
Training, validation and application patterns can
be generated through the Patterns menus using
any of the data and model structures used by
VULCAN™. Development of the network fol-
lows, split into multiple stages that can be com-
bined in a single batch development script that
can be used more than once. Finally, the results
from running a developed network can be im-
ported through the Results menu.

2.2 Interface to SNNS
The Stuttgart Neural Network Simulator
(SNNS) is a well developed and complete envi-
ronment that has been around since 1990. It is a
multi platform package that allows development
of neural network systems using a wide variety
of topology architectures and training algo-
rithms. A Java based version of SNNS called
JavaNNS is also available. The original X-
Windows version comes complete with a batch
development language called Batchman. The
LavaNet interface presented in this paper util-
izes this tool for the development and applica-
tion of neural network systems from within
VULCAN™ (Fig. 2). The current (4.3) and pre-

vious versions of SNNS can be downloaded for
free and be used on different operating systems.

3. LAVANET OPERATION

3.1 Network Topology Specification
LavaNet is based on SNNS and, therefore, is us-
ing the particular network structures and algo-
rithms provided by this simulator. Currently
three network models are implemented in La-
vaNet, Multi-Layer Perceptrons (MLP), Radial
Basis Function Networks (RBFN), and Self Or-
ganizing Maps (SOM). Networks can be de-
signed with particular input, hidden and output
nodes, and specific initialization, learning and
updating functions as in SNNS.

Network design panels in LavaNet are meant
to be complimentary to the original SNNS envi-
ronment - LavaNet can receive any SNNS com-
patible network file and use it for development
and application. Network and pattern files de-
veloped through LavaNet can also be examined,
analysed and further developed in SNNS or
JavaNNS. All Batchman and SNNS messages
are shown in Vulcan’s report window during
LavaNet operation.
3.2 Data Sources
Probably the most important aspect of LavaNet
is the pattern generation options. One of the
common time consuming issues in neural net-
work development is the generation of training
and validation patterns from existing data
sources such as drillhole databases, triangula-
tion models, block models, formatted data files,
and vector data. LavaNet can handle any of the
available data sources in VULCAN™ and prac-
tically cover any possible source of information
in a general mine planning package.

Each data source, whether it is a database or
a model, normally hosts a number of variables
or parameters, such as coordinates, assay values,
rock codes, etc. These can be numerical or al-
phanumerical depending on what the variable
represents. Using LavaNet Direct Patterns op-
tions, and depending on the number of inputs
and outputs defined through network setup, any
of the available variables from a particular data
source can be assigned as an input or an output.
Certain data sources have a very specific dimen-
sionality, such as grid models where only three

Figure 1: LavaNet menu structure and toolbar within En-
visage.

3rd AMIREG International Conference (2009): Assessing the Footprint of 202
Resource Utilization and Hazardous Waste Management, Athens, Greece

parameters are available - the two coordinates
for each node and its value (Table 1). This must
be considered before defining the network ar-
chitecture. VULCAN™ provides a number of
ways to combine information from multiple
sources in a single model or file, so data source
variable limitations should not be a problem for
users of LavaNet.

LavaNet can also generate pattern files for
network development and application through
searching in 2D or 3D space for sample pairs.
Search patterns can be generated by searching
the data source for sample pairs in the space de-
fined by user selectable dimensions.

3.3 Direct Patterns
Direct patterns can be formed by converting the

information contained in a layer, triangulation,
grid or any data source into patterns. In case of a
triangulation, for example, each node will pro-
duce a pattern consisting of three parameters -
the node coordinates. Information from multiple
models or databases can be combined using ex-
isting VULCAN™ functionality. Typically, a
database will be the source of information for
the generation of training and validation patters,
while a model structure can provide the desired
application patterns. It is important, of course,
that both database and model have the informa-
tion to produce the same input and output space.

3.4 Search Patterns
In addition to direct patterns, LavaNet can help
explore the relationship between database sam-
ples and/or model nodes through the calculation
of distance and direction between them, either
in two or three dimensional space (Fig. 3). The
actual dimensions used in calculating distance
and direction between samples or nodes can be
anything from standard coordinates to assay
values. In other words, searching can be per-
formed in spaces other than the 2D or 3D coor-
dinates space.

Table 1: Data sources and available parameters for net-
work inputs and outputs.

Data
source

Inputs de-
scription

Inputs
count

Outputs de-
scription

Outputs
count

MAP file

Sample co-
ordinates,
sample vol-
ume, assays,
codes, etc.

Un-
limited

Sample co-
ordinates,
sample vol-
ume, as-
says, codes,
etc.

Un-
limited

CSV file

Sample co-
ordinates,
sample vol-
ume, assays,
codes, etc.

Un-
limited

Sample co-
ordinates,
sample vol-
ume, as-
says, codes,
etc.

Un-
limited

ISIS
data-
base

Sample co-
ordinates,
sample vol-
ume, assays,
codes, etc.

Un-
limited

Sample co-
ordinates,
sample vol-
ume, as-
says, codes,
etc.

Un-
limited

Triangu-
lation
model

Node X,Y
coordinates 2 Node Z co-

ordinate 1

Block
model

Block cen-
troid coordi-
nates, vol-
ume, vari-
ables

Un-
limited

Block cen-
troid coor-
dinates,
volume,
variables

Un-
limited

Grid
model

Node X,Y
coordinates 2 Node Z co-

ordinate 1

Vector
data

Point X,Y or
X,Y,Z coor-
dinates

2 or 3 Point Z, W*
value 1

Figure 2: Information flow between Vulcan, LavaNet and
SNNS during neural network development and applica-
tion.

3rd AMIREG International Conference (2009): Assessing the Footprint of 203
Resource Utilization and Hazardous Waste Management, Athens, Greece

3.5 Normalisation
LavaNet has the ability to normalize data be-
tween an upper and lower bound. Each sample
of data is multiplied by an Amplitude value and
shifted by an Offset value. The amplitude and
offset are referred to as normalization coeffi-
cients. These coefficients are computed per in-
put and output, meaning that there is a unique
amplitude and offset value for each input and
output. The coefficients are stored in a normali-
zation file named after the pattern file name and
a .txt extension within the working area direc-
tory of Vulcan.

The normalization coefficients are computed
based on the Minimum and Maximum values
found across all data in the selected data source.
As one data source may be used for training and
validation, and another be used for running the
trained network, it is important to generate and
use the normalization file from the data source
with the greater extents in the given input and
output space. For example, if a drillhole data-

base is used as the data source for training and
validation, and a block model that includes all
drillholes is used for running the network then
the block model normalization file should be
used to normalize training, validation and run
pattern files. This will guarantee that all of the
patterns of the selected data sources will fall be-
tween the upper and lower bounds. The nor-
malization file is also used by LavaNet to de-
normalize the network data, i.e. to put it in
terms of the original data. Normalization coeffi-
cients are calculated using the following formu-
lae:

Amplitude(i) = (UpperBound - LowerBound) /
(Maximum(i) - Minimum(i))

Offset(i) = UpperBound - Amplitude(i) * Maxi-
mum(i)

The values 0.1 and 0.9 are used as the Upper
and Lower bounds. The pattern generation op-
tions normalize and de-normalise data using the
following formulae:

NormData(i) = Amplitude(i) * Data(i) + Off-
set(i)

DenormData(i) = (Data(i) - Offset(i)) / Ampli-
tude(i)

LavaNet also provides the ability to generate
a normalization file using user defined upper
and lower bounds. This is important when train-
ing, validation and application patterns have dif-
ferent input and output space limits.

3.6 Network Development and Application
Network development is a multiple stage proc-
ess in LavaNet. After the generation of the un-
developed network file, the network is initial-
ised using one of the available initialisation
functions in LavaNet. Initialisation is important
as it provides the starting point for further de-
velopment of the network, by giving appropriate
values to the free parameters of the network
(initial weights, biases, function centers, etc.)
After initialisation, the network can be trained
using an appropriate learning function depend-
ing on the type of network. LavaNet provides
the ability to split the training pattern file to two
subsets that will be used for training and valida-
tion (Fig. 4). This can be done with training pat-
terns first and validation last or evenly. The per-

Figure 3: Search pattern panel options and effects.

3rd AMIREG International Conference (2009): Assessing the Footprint of 204
Resource Utilization and Hazardous Waste Management, Athens, Greece

centage used for each subset is also defined by
the user.

Termination of training can be based on one
of the four criteria provided by SNNS (sum or
mean of squared error, sum of squared error per
unit or number of training cycles). LavaNet can
store the network state that produces the lowest
mean squared error (MSE) when termination is
based on cycles, e.g. the network can be trained
for 10,000 cycles but MSE was lowest at 7,500
leading to LavaNet saving the network at that
point and not at the end of training.

As all network development actions in La-
vaNet are stored in Batchman compatible script
files, the user can combine them using a text
editor to further automate the development
process once it is finalised.

4. CASE STUDIES

4.1 Modeling of Lignite Thickness
The first example is a simple 2D application of
a MLP network for the construction of a mine-
able thickness model of a lignite deposit. Mine-
able thickness was evaluated in each drillhole
available and a pattern file is generated with two
inputs, the X and Y coordinates of the drillhole,
and one output, the mineable lignite thickness.
Part of the SNNS pattern file built by LavaNet
using the drillhole database thickness informa-
tion is shown below. Each pattern consists of
two lines, the first giving the inputs and the sec-

ond giving the output (normalised).
The pattern file was split 60%-40% for train-

ing and validation. The network was first initial-
ised and then trained using the script that was
generated by LavaNet (Fig. 6). Training lasted
20,000 cycles while the network’s performance
was validated every 500. The best network state
according to MSE was saved to a separate net-
work file. This network was used to generate a
grid model of mineable lignite thickness using
the appropriate LavaNet options. A separate ap-

Figure 4: Network training and validation panel with
choice of pattern files, learning parameters and training
termination criterion.

SNNS pattern definition file V1.4
generated at Thu Jun 22 15:01:23 2006

No. of patterns : 1656
No. of input units : 2
No. of output units : 1

Pattern 631
0.536582871292458 0.35064173900141
0.420175631174534

Figure 5: Example of pattern file generated by LavaNet
with normalisation of inputs and output.

loadNet("init_cotk.net")
loadPattern("lavanet_trn.pat")
loadPattern("lavanet_vln.pat")
setPattern("lavanet_trn.pat")
min_error = 1
setShuffle (TRUE)
setLearn-
Func("BackpropMomentum",0.01,0.2,0,0.01)
setUpdateFunc ("Topological_Order")
repeat
 for i:=1 to 500 do
 trainNet ()
 endfor
 setPattern ("lavanet_vln.pat")
 testNet()
 if min_error > MSE then
 min_error = MSE
 saveNet("train_init_cotk.net")
 print ("Best MSE = ", MSE)
 endif
 criterion := CYCLES
 print ("Cycles=",CYCLES,"CYCLES=",CYCLES)
 setPattern ("lavanet_trn.pat")
until criterion >= 20000

Figure 6: Batchman training script generated by LavaNet.

Figure 7: Model of mineable lignite thickness built using
LavaNet.

3rd AMIREG International Conference (2009): Assessing the Footprint of 205
Resource Utilization and Hazardous Waste Management, Athens, Greece

plication pattern file was generated for this, us-
ing an existing grid model to provide the inputs
for network application. Figure 7 shows the pro-
duced model of lignite thickness.

4.2 Modelling of WO3 Grade in 3D
In this second example, an RBF network is used
to estimate WO3 grade of a tungsten deposit in
3D (X,Y,Z coordinates as inputs). Drillhole
composite data are used to generate the pattern
files to train and validate the network, while a
block model is used to generate the application
pattern file. The development of the network is
similar to the previous example - the initializa-
tion, learning and updating functions differ as a
different type of network is now used. The
trained network is applied on the block model
pattern file and the results are de-normalized
and imported back into the block model (Fig. 8).
Figure 9 shows a section through the block
model colored by WO3 estimates of the La-
vaNet RBF network.

5. CONCLUSIONS
LavaNet is an interface to a neural network de-
velopment environment, built inside a general
mine planning package, which allows quick and
effortless development and application of artifi-
cial neural networks for mining and environ-
mental problems. LavaNet is constantly under
development with further options and function-
ality being added that take advantage of new
capabilities provided by new versions of Vul-
can’s LAVA scripting language. LavaNet is
available for downloading from:
airlab.teikoz.gr/geope/downloads/kapageridis/lavanet.htm

REFERENCES
Kapageridis, I., 2005. Input Space Configuration Effects

in Neural Network Based Grade Estimation. Com-
puters & Geosciences, Vol. 31, Issue 6, International
Association for Mathematical Geology, Elsevier, pp.
704-717.

Kapageridis, I., 1999. Application of Artificial Neural
Network Systems in Grade Estimation from Explora-
tion Data, PhD Thesis, Department of Mineral Re-
sources Engineering, University of Nottingham, Not-
tingham.

Kapageridis, I., 2002. Artificial Neural Network Technol-
ogy in Mining and Environmental Applications. In:
11th International Symposium on Mine Planning and
Equipment Selection (MPES 2002), VŠB - Technical
University of Ostrava, Prague.

Figure 8: Importing of network application results into
block model in Vulcan using LavaNet Results options.

Figure 9: Block model section showing WO3 estimates
from LavaNet RBF network.

