
3rd AMIREG International Conference (2009): Assessing the Footprint of 200 
Resource Utilization and Hazardous Waste Management, Athens, Greece 
 
 

LavaNet - a neural network modelling toolkit for mine planning and 
environmental modelling 

I.K. Kapageridis 
Laboratory of Mining Information Technology and GIS Applications, Department of Geotechnology 
and Environmental Engineering, Technological Educational Institute of Western Macedonia, Greece 
 
 
 
 
 
 
ABSTRACT 
LavaNet consists of a series of scripts written in 
Perl that give access to a neural network simula-
tion environment inside a general mine planning 
package. LavaNet enables easy development of 
neural network training datasets using informa-
tion from any of the data and model structures 
available, such as block models and drillhole 
databases. Neural networks can be trained inside 
the mine planning environment and the results 
be used to generate new models that can be 
visualised in 3D. Direct comparison of devel-
oped neural network models with conventional 
and geostatistical techniques is now possible 
within the same environment. LavaNet supports 
Radial Basis Function networks, Multi-Layered 
Perceptrons and Self-Organised Maps. The 
flexibility of LavaNet in developing neural net-
work based models and its integration with the 
mine planning environment is demonstrated us-
ing two different examples: a geological struc-
ture model and a 3D block model attribute esti-
mation.  

1. INTRODUCTION 
A number of mining planning related problems 
have been approached using artificial neural 
network (ANN) technology in the last couple of 
decades. These problems commonly relate to 
pattern classification, prediction and optimiza-
tion. The general trend in the mining industry 
for automation to the greatest degree calls for 
technologies such as ANNs that can utilize large 
amounts of data for the development of models 
which, otherwise, are very difficult or some-
times even impossible to construct.  

One particular area were ANNs have been 
applied in the mine planning sector is in spatial 
analysis problems (Kapageridis, 2002). Explora-
tion and resource estimation commonly involves 
the prediction of various parameters characteriz-
ing a mineral deposit or a reservoir. Input data 
usually come in the form of samples with 
known positions in 3D space. The most com-
mon practice when developing training patterns 
sets for an ANN, is to generate input-output 
pairs with the input being the sample location 
and the desired output being the value of the 
modeled parameter at that location. Some other 
systems go a step further to exploit information 
hidden in the relationship between neighboring 
samples (Kapageridis, 1999, 2005). The estima-
tion of a parameter at a specific location in 3D 
space is, in this case, depending on information 
from samples around that location.  

Regardless of the approach, a common ob-
stacle in developing neural network solutions to 
mining problems is the development of appro-
priate data sets that can be used for neural net-
work training as well as the transfer of neural 
network application results back into the mine 
planning process. The neural network develop-
ment environment described in this paper ad-
dresses these problems and provides a platform 
for fast and comprehensive development of neu-
ral network models within a general mine plan-
ning package.  

2. LAVA SCRIPTING AND THE STUTT-
GART NEURAL NETWORK SIMULATOR 

2.1 Integration with Vulcan 
It is very common in mine planning packages to 
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integrate a scripting language that allows auto-
mation of repetitive tasks and the extension of 
built-in functionality of the software. Lava is a 
module for a version of the popular scripting 
language Perl that is built into VULCAN™.  

LavaNet consists of a number of scripts that, 
once copied in the VULCAN™ installation di-
rectory, can be accessed as a menu option or 
through the provided toolbar. The scripts run 
and behave as any other standard option and the 
user has no feeling of the script compilation 
process that takes place in the background. The 
toolbar groups LavaNet options depending on 
their purpose as shown in Figure 1. The user can 
determine the project name and network topol-
ogy architecture through the setup options. 
Training, validation and application patterns can 
be generated through the Patterns menus using 
any of the data and model structures used by 
VULCAN™. Development of the network fol-
lows, split into multiple stages that can be com-
bined in a single batch development script that 
can be used more than once. Finally, the results 
from running a developed network can be im-
ported through the Results menu. 

2.2 Interface to SNNS 
The Stuttgart Neural Network Simulator 
(SNNS) is a well developed and complete envi-
ronment that has been around since 1990. It is a 
multi platform package that allows development 
of neural network systems using a wide variety 
of topology architectures and training algo-
rithms. A Java based version of SNNS called 
JavaNNS is also available. The original X-
Windows version comes complete with a batch 
development language called Batchman. The 
LavaNet interface presented in this paper util-
izes this tool for the development and applica-
tion of neural network systems from within 
VULCAN™ (Fig. 2). The current (4.3) and pre-

vious versions of SNNS can be downloaded for 
free and be used on different operating systems.  

3. LAVANET OPERATION 

3.1 Network Topology Specification 
LavaNet is based on SNNS and, therefore, is us-
ing the particular network structures and algo-
rithms provided by this simulator. Currently 
three network models are implemented in La-
vaNet, Multi-Layer Perceptrons (MLP), Radial 
Basis Function Networks (RBFN), and Self Or-
ganizing Maps (SOM). Networks can be de-
signed with particular input, hidden and output 
nodes, and specific initialization, learning and 
updating functions as in SNNS.  

Network design panels in LavaNet are meant 
to be complimentary to the original SNNS envi-
ronment - LavaNet can receive any SNNS com-
patible network file and use it for development 
and application. Network and pattern files de-
veloped through LavaNet can also be examined, 
analysed and further developed in SNNS or 
JavaNNS. All Batchman and SNNS messages 
are shown in Vulcan’s report window during 
LavaNet operation. 
3.2 Data Sources 
Probably the most important aspect of LavaNet 
is the pattern generation options. One of the 
common time consuming issues in neural net-
work development is the generation of training 
and validation patterns from existing data 
sources such as drillhole databases, triangula-
tion models, block models, formatted data files, 
and vector data. LavaNet can handle any of the 
available data sources in VULCAN™ and prac-
tically cover any possible source of information 
in a general mine planning package.  

Each data source, whether it is a database or 
a model, normally hosts a number of variables 
or parameters, such as coordinates, assay values, 
rock codes, etc. These can be numerical or al-
phanumerical depending on what the variable 
represents. Using LavaNet Direct Patterns op-
tions, and depending on the number of inputs 
and outputs defined through network setup, any 
of the available variables from a particular data 
source can be assigned as an input or an output. 
Certain data sources have a very specific dimen-
sionality, such as grid models where only three 

Figure 1: LavaNet menu structure and toolbar within En-
visage. 
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parameters are available - the two coordinates 
for each node and its value (Table 1). This must 
be considered before defining the network ar-
chitecture. VULCAN™ provides a number of 
ways to combine information from multiple 
sources in a single model or file, so data source 
variable limitations should not be a problem for 
users of LavaNet. 

LavaNet can also generate pattern files for 
network development and application through 
searching in 2D or 3D space for sample pairs. 
Search patterns can be generated by searching 
the data source for sample pairs in the space de-
fined by user selectable dimensions. 

3.3 Direct Patterns 
Direct patterns can be formed by converting the 

information contained in a layer, triangulation, 
grid or any data source into patterns. In case of a 
triangulation, for example, each node will pro-
duce a pattern consisting of three parameters - 
the node coordinates. Information from multiple 
models or databases can be combined using ex-
isting VULCAN™ functionality. Typically, a 
database will be the source of information for 
the generation of training and validation patters, 
while a model structure can provide the desired 
application patterns. It is important, of course, 
that both database and model have the informa-
tion to produce the same input and output space. 

3.4 Search Patterns 
In addition to direct patterns, LavaNet can help 
explore the relationship between database sam-
ples and/or model nodes through the calculation 
of distance and direction between them, either 
in two or three dimensional space (Fig. 3). The 
actual dimensions used in calculating distance 
and direction between samples or nodes can be 
anything from standard coordinates to assay 
values. In other words, searching can be per-
formed in spaces other than the 2D or 3D coor-
dinates space. 

Table 1: Data sources and available parameters for net-
work inputs and outputs. 

Data 
source 

Inputs de-
scription 

Inputs 
count 

Outputs de-
scription 

Outputs 
count 

MAP file 

Sample co-
ordinates, 
sample vol-
ume, assays, 
codes, etc. 

Un-
limited 

Sample co-
ordinates, 
sample vol-
ume, as-
says, codes, 
etc. 

Un-
limited 

CSV file 

Sample co-
ordinates, 
sample vol-
ume, assays, 
codes, etc. 

Un-
limited 

Sample co-
ordinates, 
sample vol-
ume, as-
says, codes, 
etc. 

Un-
limited 

ISIS 
data-
base 

Sample co-
ordinates, 
sample vol-
ume, assays, 
codes, etc. 

Un-
limited 

Sample co-
ordinates, 
sample vol-
ume, as-
says, codes, 
etc. 

Un-
limited 

Triangu-
lation 
model 

Node X,Y 
coordinates 2 Node Z co-

ordinate 1 

Block 
model 

Block cen-
troid coordi-
nates, vol-
ume, vari-
ables 

Un-
limited 

Block cen-
troid coor-
dinates, 
volume, 
variables 

Un-
limited 

Grid 
model 

Node X,Y 
coordinates 2 Node Z co-

ordinate 1 

Vector 
data 

Point X,Y or 
X,Y,Z coor-
dinates 

2 or 3 Point Z, W* 
value 1 

Figure 2: Information flow between Vulcan, LavaNet and 
SNNS during neural network development and applica-
tion. 
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3.5 Normalisation 
LavaNet has the ability to normalize data be-
tween an upper and lower bound. Each sample 
of data is multiplied by an Amplitude value and 
shifted by an Offset value. The amplitude and 
offset are referred to as normalization coeffi-
cients. These coefficients are computed per in-
put and output, meaning that there is a unique 
amplitude and offset value for each input and 
output. The coefficients are stored in a normali-
zation file named after the pattern file name and 
a .txt extension within the working area direc-
tory of Vulcan. 

The normalization coefficients are computed 
based on the Minimum and Maximum values 
found across all data in the selected data source. 
As one data source may be used for training and 
validation, and another be used for running the 
trained network, it is important to generate and 
use the normalization file from the data source 
with the greater extents in the given input and 
output space. For example, if a drillhole data-

base is used as the data source for training and 
validation, and a block model that includes all 
drillholes is used for running the network then 
the block model normalization file should be 
used to normalize training, validation and run 
pattern files. This will guarantee that all of the 
patterns of the selected data sources will fall be-
tween the upper and lower bounds. The nor-
malization file is also used by LavaNet to de-
normalize the network data, i.e. to put it in 
terms of the original data. Normalization coeffi-
cients are calculated using the following formu-
lae: 

Amplitude(i) = (UpperBound - LowerBound) / 
(Maximum(i) - Minimum(i)) 

Offset(i) = UpperBound - Amplitude(i) * Maxi-
mum(i) 

The values 0.1 and 0.9 are used as the Upper 
and Lower bounds. The pattern generation op-
tions normalize and de-normalise data using the 
following formulae: 

NormData(i) = Amplitude(i) * Data(i) + Off-
set(i) 

DenormData(i) = (Data(i) - Offset(i)) / Ampli-
tude(i) 

LavaNet also provides the ability to generate 
a normalization file using user defined upper 
and lower bounds. This is important when train-
ing, validation and application patterns have dif-
ferent input and output space limits.  

3.6 Network Development and Application 
Network development is a multiple stage proc-
ess in LavaNet. After the generation of the un-
developed network file, the network is initial-
ised using one of the available initialisation 
functions in LavaNet. Initialisation is important 
as it provides the starting point for further de-
velopment of the network, by giving appropriate 
values to the free parameters of the network 
(initial weights, biases, function centers, etc.) 
After initialisation, the network can be trained 
using an appropriate learning function depend-
ing on the type of network. LavaNet provides 
the ability to split the training pattern file to two 
subsets that will be used for training and valida-
tion (Fig. 4). This can be done with training pat-
terns first and validation last or evenly. The per-

Figure 3: Search pattern panel options and effects. 
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centage used for each subset is also defined by 
the user. 

Termination of training can be based on one 
of the four criteria provided by SNNS (sum or 
mean of squared error, sum of squared error per 
unit or number of training cycles). LavaNet can 
store the network state that produces the lowest 
mean squared error (MSE) when termination is 
based on cycles, e.g. the network can be trained 
for 10,000 cycles but MSE was lowest at 7,500 
leading to LavaNet saving the network at that 
point and not at the end of training. 

As all network development actions in La-
vaNet are stored in Batchman compatible script 
files, the user can combine them using a text 
editor to further automate the development 
process once it is finalised.  

4. CASE STUDIES 

4.1 Modeling of Lignite Thickness 
The first example is a simple 2D application of 
a MLP network for the construction of a mine-
able thickness model of a lignite deposit. Mine-
able thickness was evaluated in each drillhole 
available and a pattern file is generated with two 
inputs, the X and Y coordinates of the drillhole, 
and one output, the mineable lignite thickness. 
Part of the SNNS pattern file built by LavaNet 
using the drillhole database thickness informa-
tion is shown below. Each pattern consists of 
two lines, the first giving the inputs and the sec-

ond giving the output (normalised). 
The pattern file was split 60%-40% for train-

ing and validation. The network was first initial-
ised and then trained using the script that was 
generated by LavaNet (Fig. 6). Training lasted 
20,000 cycles while the network’s performance 
was validated every 500. The best network state 
according to MSE was saved to a separate net-
work file. This network was used to generate a 
grid model of mineable lignite thickness using 
the appropriate LavaNet options. A separate ap-

Figure 4: Network training and validation panel with 
choice of pattern files, learning parameters and training 
termination criterion. 

SNNS pattern definition file V1.4 
generated at Thu Jun 22 15:01:23 2006 
 
No. of patterns     : 1656 
No. of input units  : 2 
No. of output units : 1 
 
# Pattern 631 
0.536582871292458 0.35064173900141  
0.420175631174534  

Figure 5: Example of pattern file generated by LavaNet 
with normalisation of inputs and output. 
 
loadNet("init_cotk.net") 
loadPattern("lavanet_trn.pat") 
loadPattern("lavanet_vln.pat") 
setPattern("lavanet_trn.pat") 
min_error = 1 
setShuffle (TRUE) 
setLearn-
Func("BackpropMomentum",0.01,0.2,0,0.01) 
setUpdateFunc ("Topological_Order" ) 
repeat 
   for i:=1 to 500 do 
      trainNet () 
   endfor 
   setPattern ("lavanet_vln.pat") 
   testNet() 
   if min_error > MSE then 
      min_error = MSE 
      saveNet("train_init_cotk.net") 
      print ("Best MSE = ", MSE) 
   endif 
   criterion := CYCLES 
   print ("Cycles=",CYCLES,"CYCLES=",CYCLES) 
   setPattern ("lavanet_trn.pat") 
until criterion >= 20000 

Figure 6: Batchman training script generated by LavaNet.

Figure 7: Model of mineable lignite thickness built using 
LavaNet. 
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plication pattern file was generated for this, us-
ing an existing grid model to provide the inputs 
for network application. Figure 7 shows the pro-
duced model of lignite thickness. 

4.2 Modelling of WO3 Grade in 3D 
In this second example, an RBF network is used 
to estimate WO3 grade of a tungsten deposit in 
3D (X,Y,Z coordinates as inputs). Drillhole 
composite data are used to generate the pattern 
files to train and validate the network, while a 
block model is used to generate the application 
pattern file. The development of the network is 
similar to the previous example - the initializa-
tion, learning and updating functions differ as a 
different type of network is now used. The 
trained network is applied on the block model 
pattern file and the results are de-normalized 
and imported back into the block model (Fig. 8). 
Figure 9 shows a section through the block 
model colored by WO3 estimates of the La-
vaNet RBF network. 

5. CONCLUSIONS 
LavaNet is an interface to a neural network de-
velopment environment, built inside a general 
mine planning package, which allows quick and 
effortless development and application of artifi-
cial neural networks for mining and environ-
mental problems. LavaNet is constantly under 
development with further options and function-
ality being added that take advantage of new 
capabilities provided by new versions of Vul-
can’s LAVA scripting language. LavaNet is 
available for downloading from: 
airlab.teikoz.gr/geope/downloads/kapageridis/lavanet.htm 
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Figure 8: Importing of network application results into 
block model in Vulcan using LavaNet Results options. 
 

Figure 9: Block model section showing WO3 estimates 
from LavaNet RBF network. 


