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ABSTRACT  

Open pit optimisation is a process aiming at the determination of the extents of the optimum pit 
such that the profit made in mining the pit is maximised. The choice of blocks to mine for the 
optimum pit is an example of the selection problem. A selection problem is based on a set of tasks, 
where each task has a value or a cost. In most cases, there are certain relationships between tasks, 
such that in order to perform one task a number of prerequisite tasks must be performed. The 
solution of the selection problem is the subset of tasks that the sum of their value is the maximum 
possible within the set when performed. In terms of mining, each block (a task in the selection 
problem) in a 3D block model is assigned either a profit or a loss based on the revenues and costs 
associated with mining the block. Geologic constraints are used to establish slope requirements for 
each block which are used to determine the blocks which must be removed prior to the removal of 
any given block. Traditional methods of solving the selection problem in open pit optimisation 
included the floating cone algorithm and the Lerchs-Grossman algorithm based on graph theory. 
The latter dominated open pit optimisation software products and solutions in the 80s and 90s and 
offered mining engineers a solid solution to the pit optimisation problem. A decade later from the 
first implementation of the Lerchs-Grossman algorithm, Picard proved that the pit optimisation 
problem could be solved with more efficient maximum flow algorithms. In 1988 Goldberg and 
Tarjan published the first paper describing the Push-Relabel algorithm for solving the maximum 
flow problem. Later in 1997, Cherkassky and Goldberg published a paper describing a very 
efficient implementation of the more general Push-Relabel algorithm. This algorithm is used in our 
case study of surface lignite mine optimisation. A lignite deposit from the region of Kozani as well 
as all associated technical and financial parameters are used as input to the Push-Relabel 
implementation provided by a mine planning software package, and the optimisation output is 
analysed in order to assess the benefits of applying the Push-Relabel algorithm to lignite deposits.  

 

1 INTRODUCTION 

Open pit optimisation is a process commonly applied in mine planning of surface mines to 
produce optimum pit limits to use as a guide for pit design. The optimisation step is also considered 
an efficient way to convert mineral resources to mineral reserves as it allows the enforcing of 
financial and technical constraints and parameters to the mine design process in an automated and 
mathematically robust way. It is commonly used even at the mineral resources estimation stage to 
limit the reported quantities inside a conceptual pit and raise the confidence in the mineral resources 
report.  
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Surface coal and lignite mines have been commonly modelled in the past using a more two-
dimensional approach, based on grid or triangulation models that did not allow the application of 
open pit optimisation algorithms, normally requiring a three-dimensional blocks model of the 
deposit. The financial aspects of coal deposits are also considered stable along the Z axis, in most 
cases where the deposit consists of a small number of coal horizons with standard qualities, leading 
to the conception that pit optimisation is an unnecessary effort. The lignite deposits in Greece, 
however, normally consist of multiple lignite layers with varying quality parameters in all three 
dimensions, making them ideal targets for computerised open pit optimisation. 

The case study presented in this paper discusses the application of the Push-Relabel method, 
one of the more recent optimisation methods, and provides a comparison with the well-established 
Lerchs-Grossman method which is used by the mining industry the last three decades. 

2 HISTORY OF OPEN PIT OPTIMISATION 

2.1 Before Computers 

Before computers found their way into mine planning, mining engineers relied on manual 
methods on hand-drawn cross-sections to produce a pit design. A simple optimisation of economic 
pit depth was usually performed with the aid of a calculator for regular shaped orebodies using 
incremental cross-sectional areas, for ore and waste, and an overall pit slope. Incremental stripping 
ratios were calculated and compared against the break-even stripping ratio. The final pit shell was 
then produced by drawing increasingly larger pit shells on cross section such that the last increment 
had a strip ratio equal to the design maximum. This was a very labour-intensive approach and could 
only ever approximate the optimal pit [1].  
 
2.2 Floating Cone Method 

The Floating Cone algorithm was introduced by Pana (1965) [2]. The method was developed 
at Kennecott Copper Corporation during the early 1960s and was the first computerised attempt at 
pit optimization, based on a three-dimensional block model of the mineral deposit. Final pit limits 
are developed by using a technique of a moving “cone” (or rather an inverted cone). The cone is 
moved around in the block model space from top to bottom generating a series of interlocking cone-
shaped openings. The disadvantage of this approach is that it creates overlapping cones, and it is 
incapable of examining all combinations of adjacent blocks. For this reason, the algorithm fails to 
consistently give realistic results and tends to “mine” more tonnage for less value. 
 
2.3 Lerchs-Grossman Method 

The same year the floating cone algorithm was introduced (1965), Lerchs and Grossmann 
published a paper that introduced two modelling approaches to solving the open pit optimisation 
problem [3]. The Lerchs-Grossman (LG) algorithm is well documented in the technical literature [4, 
5, 6, 7]. Lerchs and Grossmann presented two implementations of the pit optimisation algorithm, 
the first based on Graph Theory (heuristics) and the second on Dynamic Programming (operations 
research). They both produced optimum pit limits based on an undiscounted cash flow – an 
economic block model including both ore and waste. Essentially the methods determined which 
blocks should be mined to obtain the maximum value from the pit. LG requires a technical and a 
financial parameter: 

1. Pit slopes: these define the blocks that need to be removed before each block considered in 
the block model. They are used to generate “arcs” between blocks. 

2. Block value: refers to the economic value of each uncovered block. It will be negative for 
waste blocks and amount to all waste mining and hauling costs. Ore blocks will have values 
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based on the mining, hauling, processing, selling and any other costs, and the revenue from 
the recovered ore. 

 
Working from the lowest positive block(s) and using the block values and structure arcs, the 

method branches upwards between blocks forming a graph (Figure 1). Branches are flagged based 
on their total value. Positive branches are worth mining once uncovered. Negative branches are also 
flagged, and the method looks for positive ones that lie below them. In this case, the two branches 
are combined in a way to produce a positive total branch. The scanning is repeated until no structure 
arc goes from a positive branch to a negative. Once this is complete, the complete graph defines the 
optimum pit. Any negative branches left on their own are not to be mined. 

In mathematical terms, the LG algorithm finds the maximum closure of a weighted directed 
graph [1]. The blocks in the model represent the vertices of the graph, the block values represent the 
weights, and the mining constraints (i.e. the pit slopes) represent the arcs. Τhe LG algorithm 
provides a mathematically optimum solution to the problem of pit optimisation. The algorithm itself 
has no “sense” of the nature of the optimisation problem – it works on a set of vertices and arcs. 
Whether these are defined in one, two or three dimensions and the number of arcs per block makes 
no difference to the algorithm. The LG algorithm has been used for over 30 years on many 
feasibility studies and for many producing mines. 
 

 
Figure 1. Example of LG optimisation showing three positive blocks surrounded by negative blocks (with a value of -1) 

linked with branches forming a final graph. The negative branch in the middle is not to be mined [8]. 
 
 
2.4 Network Flow Methods and the Push-Relabel Method 

Lerchs and Grossmann suggested that the ultimate-pit problem could be expressed as a 
maximum closure network flow problem and presented their approach - a method of solving a 
special case of a network flow problem. Picard proved that a maximum closure network flow 
problem (like the open pit optimisation) could be reduced to a minimum cut network flow problem 
which could be solved by an efficient maximum flow algorithm [9]. This meant that network flow 
algorithms could be used instead of the LG algorithm, and they can calculate identical results in a 
fraction of the time. 

The Push-Relabel algorithm considered in this paper is one of the first efficient maximum 
flow algorithms used in solving the open pit optimisation problem [10, 11, 12]. It has been shown 
that the Push-Relabel algorithm outperformed the LG algorithm in nearly all cases [13]. In cases 
where the number of vertices (blocks in the pit optimisation problem) is greater than a million, 
network flow algorithms perform orders of magnitude faster and compute precisely the same results 
[1]. The pit optimisation module of Maptek Vulcan mine planning software is based on 
implementations of both the LG and Push-Relabel algorithms. 
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3 THE PUSH-RELABEL METHOD 

3.1 Historical Background 

The maximum flow problem is a classical combinatorial problem that arises in a wide variety 
of applications. The basic methods for the maximum flow problem include the network simplex 
method of Dantzig [14], [15], the augmenting path method of Ford and Fulkerson [16], the blocking 
flow method of Dinitz [17], and the push-relabel method of Goldberg and Tarjan [10], [18]. Prior to 
the push-relabel method, several studies have shown that Dinitz’s algorithm [17] is in practice 
superior to other methods, including the network simplex method [14], [15], Ford-Fulkerson 
algorithm [16], Karazanov’s algorithm [19], and Tarjan’s algorithm [20]. Several recent studies 
([21], [22], [23] and [24]) show that the push-relabel method is superior to Dinitz’s method in 
practice [25]. 

 
3.2 The Push-Relabel Method 

The definition of a pit with valid slopes is termed a “closed set” or “closure”. It consists of a 
set of nodes V that have no arcs initially. Based on the required pit slopes, a set of arcs E is defined 
representing the dependencies between blocks. A closed set of blocks is free to be removed and 
does not depend on the removal of other blocks. Finding an optimal pit is the process of finding a 
closure with maximum total value [26]. This problem is called a maximum closure problem. It is 
easy to observe in Figure 2, that the optimal pit consists of block {b, c, f, g, h, i}, with a total value 
of 3. 
 

 
Figure 2. Simple example of block model (1), block dependencies (2) and graph representation (3) for a pit 

optimisation problem [26]. 
 

Two additional special nodes are required: the flow starts from the source node and finishes at 
the sink node. Each arc is like a pipe and has a nonnegative capacity function u allowing flow up to 
a limit passing through it. The flow and capacity along an arc must be positive. The nodes (blocks) 
represent a joining of pipes, so the amount of flow into a node must equal the total flow out of the 
node, which is called the conservation constraint. Each node (block) has a weight value equal to the 
economic value of the block. Defining a complete flow graph means that we need to make the 
following changes to the graph of the block model in Figure 2: 

• Add two special (virtual) nodes: source s and sink node t. 
• For all the existing arcs (blue), assign infinite capacities. 

4 
 



• Add links from source to all positive nodes, with the capacities equal to the weight of the 
nodes. 

• Add links from negative nodes to sink, with the capacities equal to the absolute weight value 
of the nodes. 

• Remove the weights on nodes. 
 

Figure 3 shows the updated graph once all changes are made. The relation between the flow 
and mining concepts is not as straightforward as the relation between a closure and a pit [26]. One 
way to describe this is to consider the ore as the water stored in a source that as much as possible 
needs to be sent to a destination through a pipe network. The source node connects to all ore blocks, 
and the destination (sink) connects to all waste blocks. In the network, the economic value of a 
block is not reflected on a node but is measured by the capacity of the pipe (arc) that connects it 
with the source or the destination. Since the pipes representing block dependency have unlimited 
capacity, the bottlenecks of the networks are the pipes connected to the source or destination. Three 
types of pipes can be identified: “waste-to-destination”, “source-to-ore”, and “block-to-block”. 
 

 
Figure 2. Flow graph representation of the pit optimisation problem. 

 
The conservation constraint at a node v indicates that the excess ef (v), defined as the 

difference between the incoming and outgoing flows, is equal to zero. A preflow satisfies the 
capacity constraints and the conservation constraints that requires the excesses to be nonnegative. 
An arc is residual if the flow on it can be increased without exceeding its capacity and saturated 
once the capacity is reached. The residual capacity uf (v, w) of an arc between nodes v and w is the 
amount by which the arc flow can be increased. The distance labelling d: V → N satisfies the 
follow conditions: d(t) = 0 and for every residual arc (v, w), d (v) ≤ d (w) +1. A residual arc (v, w) is 
admissible if d(v) = d(w) +1. A node v is active if v is not the source or the sink node, d(v) < number 
of nodes, and ef (v) > 0. 

The push-relabel method maintains a preflow f, initially set to zero an all arcs, and a distance 
labelling d. The d (v) is initially set to the distance from v to t in the graph. In its first stage, the 
push-relabel method repeatedly performs the update operations, push and relabel until there are no 

5 
 



active nodes left. The update operations modify the preflow f and the labelling d. A push from v to 
w increases f (v, w) and ef (w) by δ = min {ef (v), uf (v, w)}, and decreases f (w, v) and ef (v, w) by the 
same amount. A relabeling of v sets the label of v equal to the largest value allowed by the valid 
labeling constraints. The second stage of the method converts f into a flow.  
 

4 A COMPARATIVE CASE STUDY 

4.1 Input Block Model 

A lignite deposit from the area of West Macedonia in NW Greece was used in the study. It 
consists of a few lignite layers, and a simpler structure compared to other lignite deposits commonly 
found in the area. The roof and floor of the mineable lignite area of the deposit was modelled as 
grid surfaces using inverse distance interpolation. The composited qualities of lignite were also 
modelled as grids. These grid models were used to generate a stratigraphic block model in Maptek 
Vulcan as shown in Figure 4. The vertical size of the blocks and their base and top side follows the 
roof and floor grid models of mineable lignite. The horizontal dimensions of the blocks were 
10x10m. 
 

 
Figure 4. Section through the stratigraphic block model showing overburden (green), mineable lignite area (red), and 

underburden (orange). 
 
 A number of financial parameters were included as variables to the stratigraphic model. 
These included all mining and processing related costs, and revenue from selling of recovered 
lignite. The calculation of these parameters was based on the volume of each block, the thickness of 
mineable lignite and parting, the specific gravity for lignite and waste, and the type of each block 
(overburden, lignite deposit, underburden). A simple script was used to calculate the necessary 
parameters in the blocks, as shown in Table 1. The constant values of waste and lignite associated 
costs and lignite revenue were set using historical information. The script stored the calculated 
values to corresponding block model variables, including the final block value which represents the 
undiscounted cash flow of uncovered blocks. This value is necessary as input for the pit 
optimisation process. The value was positive for the lignite deposit blocks and negative for 
overburden and underburden blocks.  
 All current methods of pit optimisation require a regular block model, i.e. a model with 
equally sized (regular) blocks. This meant that the stratigraphic block model that contained the 
calculated block values had to be regularised to a standard block size. This size was set to 
10x10x8m. Only the block value variable was transferred to the regularised block model as it was 
the only parameter necessary as input to pit optimisation. This variable was calculated for each 
block using a sum of the intersecting stratigraphic model blocks’ values weighted by their volume 
inside the regular block. Figure 5 shows the same section shown in Figure 4 but through the 
regularised model and coloured by block value. Blocks shown in red contain both a lignite and 
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waste component, but the weighted sum of their values results in a positive regular block. These 
blocks were used as input to the pit optimisation process. 
 
Table 1. Block value calculation script based on mineable lignite thickness, block volume and specific gravities of 
lignite and waste. 
if (seam eqs "cx") then 
 coal_volume = thickness * 100 
 parting_volume = volume - coal_volume 
 coal_tonnage = coal_volume * 1.22 
 parting_tonnage = parting_volume * 1.6 
 revenue = coal_tonnage * 26 
 mining_cost = (coal_tonnage * 1.535) + (parting_volume * 0.95) 
 processing_cost = coal_tonnage * 1.184 
 other_cost = coal_tonnage * 4.054 
 block_value = revenue - mining_cost - processing_cost - other_cost 
else 
 coal_volume = 0 
 coal_tonnage = 0 
 parting_volume = 0 
 parting_tonnage = 0 
 waste_volume = volume 
 waste_tonnage = volume * 1.6 
 revenue = 0 
 mining_cost = waste_volume * 0.95 
 processing_cost = 0 
 other_cost = 0 
 block_value = revenue - mining_cost - processing_cost - other_cost 
endif 
 
 

 
 Figure 5. Section through the regularised block model showing positive (red) and negative (orange) blocks passed to 

pit optimisation. 
 
4.2 Pit Slopes 

The second piece of information required by the pit optimisation process is the required pit 
slopes. In our example, these were based on a conceptual geological model of the deposit area and 
information related to the stability of different types of rock. The area to be optimised was split into 
three slope regions based on azimuth as shown in the following figure. A 10o slope interpolation 
area was used to transit between slope regions. The north-east and east region of the pit (between 0o 
and 135o azimuth) was considered more stable and was processed with a 45o slope, while the south 
region (between 135o and 210o azimuth) was considered less stable and was processed with a 33o 
slope. A 36o pit slope was used in the west and north-west region (between 210o and 360o azimuth). 

7 
 



 

 
Figure 6. Slope regions and slope interpolation zones shown in plan view over the approximate pit limits and block 

model extents 
 

 
4.3 Pit Optimisation 

Two separate pit optimisation runs were set up using the same input information (block model 
and pit slope regions). Two separate block model variables were added to the block model to store 
the output coding from the two runs – one for the LG method and one for Push-Relabel. Each run 
produced a separate log file providing details on the input data, optimisation process and output. 
The following table shows sections from the two log files with information on the blocks used in 
the optimisation process (feasible blocks), blocks to be mined based on the optimisation (blocks to 
be mined), ore, waste and air blocks in both cases, the undiscounted economic value of the optimum 
pit (economic value from the optimum pit) and the time taken to run each optimisation (processing 
time and total run time respectively).  

Once both runs were completed, the optimum pit limits produced by each method were 
displayed as contours surrounding the blocks to be mined on each bench (level of blocks). The pit 
limits were 100% identical between the two methods. Figure 7 shows the produced optimum pit 
limits in plan view. The effect of using different slope regions is clear. The fact that both runs 
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produced identical results was further supported by the information in the log files – both runs 
produced the same optimum pit economic value based on the same number of blocks to be mined. 
In other words, the two optimisation runs produced the same result numerically and geometrically 
to the last block. However, the time spent to produce this result was very different. LG required one 
hour and 45 minutes to complete the optimisation while Push-Relabel required one minute and 33 
seconds! 
 
Table 2. Parts of optimisation log files from the LG (top) and Push-Relabel (bottom) optimisation runs. The first three 
digits of the economic value of the optimum pit are hidden for confidentiality purposes. 
- Number of feasible blocks for the optimiser: 856834 blocks. 
   -   31916   Ore blocks   (+), 
   -  315848   Waste blocks (-), 
   -  509070   Air blocks   (0). 
 - Maximum arcs for each block................: 87 arcs. 
 - Number of arcs evaluated...................: 378776250 arcs. 
 - Number of feasible arcs to the optimiser...: 58908200 arcs. 
 - Number connections/disconnections made.....: 5349553 connections. 
 - Processing time............................: 1:45:42 Hrs. 
 - Economic value from the optimum pit........:  xxx94524.69 
 - Number of blocks to be mined...............: 484838 blocks. 
   -   14533   Ore blocks   (+), 
   -  104873   Waste blocks (-), 
   -  365432   Air blocks   (0). 
 
- Number of blocks for the optimiser..........: 856834 
 -      31916 Ore blocks   (+), 
 -     315848 Waste blocks (-), 
 -     509070 Air blocks   (0). 
Initialization time............................: 0:00:01 
 - Economic value from the optimum pit.........:  xxx94524.69 
 - Number of blocks to be mined................: 484838 
 -      14533 Ore blocks   (+), 
 -     104873 Waste blocks (-), 
 -     365432 Air blocks   (0). 
Computation time...............................: 0:00:51 
Total time.....................................: 0:01:28 
 - Pit   0: Factor Index =   0    Value =      0.00000 
Total run time.................................: 0:01:33 Hrs. 
 

5 CONCLUSIONS 

Pit optimisation is a process that can automate the definition of pit limits and make open pit 
design more efficient and less time consuming. The LG algorithm has been well established and 
accepted by the mining industry as the method for pit optimisation of most mineral deposits. Coal 
and lignite deposits were not so often approached and designed using pit optimisation. The case 
study presented in this paper proves that there is value in using pit optimisation for lignite deposits 
and that the current methods can provide a consistent and efficient way to limit the extents of lignite 
mines both horizontally and vertically. Speed improvements of the Push-Relabel method open up 
the opportunity to solve problems consisting of millions of blocks (such as large lignite mines) that 
were previously too large for the traditional LG method. 
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Figure 7. Optimum pit limits produced by both LG and Push-Relabel methods. The effect of applying different slopes 

in different regions is evident through the change in contour density of the pit walls. 
 

 

REFERENCES 

[1] Poniewierski, J. (2000). Pseudoflow Explained - A discussion of Deswik Pseudoflow Pit 
Optimization in comparison to Whittle LG Pit Optimization. Deswik Mining Consultants Pty Ltd. 
[2] Pana, M. (1965). The simulation approach to open-pit design, In J. Dotson and W. Peters, 
editors, Short Course and Symposium on Computers and Computer Applications in Mining and 
Exploration, College of Mines, University of Arizona, Tuscon, Arizona. pp. ZZ–1 – ZZ–24. 

[3] Lerchs, H. and Grossmann, I. F. (1965). Optimum design of open pit mines, The Canadian 
Mining and Metallurgical Bulletin, Vol. 58, January, pp.47-54. 

[4] Kim, Y. C. (1978). Ultimate pit design methodologies using computer models the state of the 
art, Mining Engineering, Vol. 30, pp. 1454-1459. 

10 
 



[5] Seymour, F. (1995). Pit Limit Parameterization from Modified 3D Lerchs-Grossmann 
Algorithm. SME, Preprint Number 95:96. 
[6] Alford, C.G., Whittle, J. (1986). Application of Lerchs–Grossmann pit optimization to the 
design of open pit mines, In Large Open Pit Mining Conference, AusIMM–IEAust Newman 
Combined Group, pp. 201–207. 

[7] Hustrulid, W.A., Kuchta, M. (2006). Open Pit Mine Planning & Design, 2nd Edition, Taylor & 
Francis. 

[8] Whittle Programming Pty Ltd (1998). Whittle Four-X Strategic Planning Software for Open Pit 
Mines, Reference Manual. 

[9] Picard, J. (1976). Maximal closure of a graph and applications to combinatorial problems, 
Management Science, Vol. 22, No. 11, pp. 1268–1272. 

[10] Goldberg, A.V., Tarjan, R.E. (1988). A new approach to the maximum-flow problem. Journal 
of the Association for Computing Machinery. 35 (4): 921-940. 

[11] King, V., Rao, S. (1992). A faster deterministic maximum flow algorithm. In Proceedings of 
the Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '92, pp 157-164, 
Philadelphia, PA, USA, Society for Industrial and Applied Mathematics. 
[12] Goldfarb, D., Chen, W. (1997). On strongly polynomial dual simplex algorithms for the 
maximum flow problem, Mathematical Programming 77(2):159-168. 
[13] Hochbaum, D., Chen, A. (2000). Performance Analysis and Best Implementations of Old and 
New Algorithms for the Open-Pit Mining Problem, Operations Research, Volume 48, Issue 6, pp. 
823-970 

[14] Dantzig, G.B. (1951). Application of the Simplex Method to a Transportation Problem. In T. 
C. Koopmans, editor, Activity Analysis and Production and Allocation, pages 359–373. Wiley, 
New York, 1951. 
[15] Dantzig, G.B. (1962). Linear Programming and Extensions. Princeton University Press, 
Princeton, NJ, 1962. 
[16] Ford, Jr., L.R., Fulkerson, D.R. (1962). Flows in Networks. Princeton University Press, 
Princeton, NJ. 
[17] Dinitz, E.A. (1970). Algorithm for Solution of a Problem of Maximum Flowing Networks with 
Power Estimation. Soviet Math. Dokl., 11:1277–1280. 
[18] Goldberg, A.V. (1987). Efficient Graph Algorithms for Sequential and Parallel Computers. 
PhD thesis, M.I.T., Cambridge, MA. 
[19] Karzanov, A.V. (1974). Determining the Maximal Flow in a Network by the Method of 
Preflows. Soviet Math. Dokl., 15:434–437. 
[20] Tarjan, R.E. (1984). A Simple Version of Karzanov’s Blocking Flow Algorithm. Oper. Res. 
Lett., 2:265–268. 
[21] Anderson, R.J., Setubal, J.C. (1993). Goldberg’s Algorithm for the Maximum Flow in 
Perspective: a Computational Study. In D. S. Johnson and C. C. McGeoch, editors, Network Flows 
and Matching: First DIMACS Implementation Challenge, pages 1–18. AMS, Providence, RI. 

[22] Derigs, U., Meier, W. (1989). Implementing Goldberg’s Max-Flow Algorithm—A 
Computational Investigation. ZOR—Methods and Models of Operations Research, 33:383–403. 

11 
 



[23] Derigs, U., Meier, W. (1992). An Evaluation of Algorithmic Refinements and Proper Data-
Structures for the Preflow-Push Approach for Maximum Flow. NATO ASI Series on Computer and 
System Sciences, vol. 8, pp. 209–223. Nijhoff, The Hague. 

[24] Nguyen, Q.C., Venkateswaran, V. (1993). Implementations of Goldberg–Tarjan Maximum 
Flow Algorithm. In D. S. Johnson and C. C. McGeoch, editors, Network Flows and Matching: First 
DIMACS Implementation Challenge, pp. 19–42. AMS, Providence, RI. 
[25] Cherkassky, B.V., Goldberg, A.V. (1997). On Implementing Push-Relabl method for the 
maximum flow problem. Algorithmica 19: 390-410. 
[26] Bai, V.X., Turczynski, G., Baxter, N., Place, D., Sinclair-Ross, H., Ready, S. (2017). 
Pseudoflow method for pit optimization, Whitepaper, Geovia-Whittle, Dassault Systems.  

12 
 


	ABSTRACT
	1 INTRODUCTION
	2 History of Open Pit Optimisation
	2.1 Before Computers
	2.2 Floating Cone Method
	2.3 Lerchs-Grossman Method
	2.4 Network Flow Methods and the Push-Relabel Method

	3 the push-relabel method
	3.1 Historical Background
	3.2 The Push-Relabel Method

	4 A Comparative Case Study
	4.1 Input Block Model
	4.2 Pit Slopes
	4.3 Pit Optimisation

	5 conclusionS
	REFERENCES

