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ABSTRACT : The application of geological controls in orebody evaluation and modelling is 
critical. Stratigraphic orebodies require more accurate location in space and better seam 
boundary definition. This is achieved by either modelling boundary surfaces of the orebodies 
or their thickness at specific points in 3D space. Structurally deformed stratigraphic deposits 
pose a very special problem in variography and grade estimation – it is necessary to bring the 
locations of samples from the deformed space to the standard XYZ co-ordinate system. This 
is necessary in order to reconstruct the spatial distribution of grades at the time the deposit 
was formed and restore the relative positions of samples to their pre-deformed state. Earlier 
methods of unfolding deposits were based on various geometrical, mathematical or even 
manual techniques, while more recent methods were based on the use of an unfolded 
coordinate system for the transformation of every sample and estimation point. The 
alternative method presented in this paper, Tetrahedral Modelling, can be applied to deposits 
where mineralization is controlled by a pair of structural surfaces that can be modelled. In 
tetrahedral modelling the search ellipse is distorted to follow nominated structural surfaces 
leading to improved estimation accuracy. A case study is presented showing the benefits of 
this technique. 
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1. Introduction 

The dynamics of folding in mineral deposits have been extensively studied in several analyses 
and simulations. A number of methods for modelling deformations produced by various 
folding mechanisms have been developed. Earlier methods of unfolding deposits were based 
on various geometrical, mathematical or even manual techniques such as least squares, 
cylindrical unfolding or the fitting of splines (Royle 1979, Dagbert et al. 1983, Dowd 1986). 
Other more recent methods were based on the use of an unfolded coordinate system for the 
transformation of every sample and every estimation point for variography and grade 
estimation (Newton 1995). Tetrahedral modelling for variography and grade estimation was 
developed by Trevor Coulsen in 1995 (Maptek Pty Ltd) and implemented in Maptek’s 
VULCAN 3D software package. Further improvements to the original algorithm were made 
by Peter Borovina (Maptek Pty Ltd) in 2002. Tetrahedral modelling is a method of adjusting 
the search ellipse used in variography and grade estimation to follow the geometrical structure 
of the deposit by forming a 3D tetrahedral model of the deposit volume. For this model to be 
generated, the structural surfaces of the deposit need to be modelled as surface triangulations.  

2. Modelling of Structural Surfaces 

Orebody outlines are usually interpreted by geologists from drillhole and development 
intersections on or near the plane of a cross section. Automated methods for geometrical 
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modelling of stratigraphic horizons also exist but these are generally limited to cases where 
the horizons are fairly flat and consistent. Regardless of the method used, the geometrical 
model of the orebody needs to be generated and used to constrain the estimation process. 
Intersection points with a stratigraphic orebody’s roof or floor can be used to create a surface 
approximated by a regular grid or triangulation model and an interpolation algorithm.  
2.1. Surface Triangulations Using a Projection Plane 
Surface triangulations are structures consisting of an irregular mesh of triangle facets, built 
from a three-dimensional spatial distribution of point data and/or strings. All facets in a 
surface triangulation are unique in their spatial extent with respect to the plane of projection, 
i.e. no overlaps are allowed in this plane. The formation of facet edges is controlled by joining 
individual data points to form strings. Facet edges are not allowed to intersect these strings 
(also referred to as breaklines). The standard Delaunay triangulation algorithm attempts to 
create equiangular triangle facets honouring all strings as breaklines. The algorithm works in 
a plane that can be nominated parallel to the structure that is to be modelled. The proper use 
of a projection plane reflecting the average trend of the data can remove overhangs and often 
resolve ambiguities caused by the sampling pattern. 
2.2. Surface Triangulations in 3D 
In cases where it is impossible to find a plane that can be used to effectively model the 
available data using the Delaunay algorithm, like in overturned folded or reverse faulted 
surfaces, a different algorithm needs to be used. The solid triangulation creation routine 
implemented in VULCAN can be used to create models of complex stratigraphic boundaries. 
This routine joins closed or open strings of points with triangle facets and is ideal for 
generating complex models from data in sections. The sections containing the point or string 
data are not required to be parallel to each other. In cases of extreme variation of the modelled 
structure shape from one section to the next, tie lines are used to guide the triangulation 
routine. In the example presented in this paper, tie lines were used to join fold noses and 
where there was a significant difference in the density of data between sections. 

3. Creating a Tetrahedral Model 

All volumetric geometries can be represented in 3D using a set of tetrahedra. Tetrahedral 
modelling uses the tetrahedron as the basic unit for representing volumetric geometry. A 
tetrahedral model is composed of indexed 3D tetrahedra, in contrast to the set of connected 
flat triangles forming a standard triangulation. In the computer graphics and finite element 
research areas there is a growing interest in the use of tetrahedra for modelling volumes in 3D. 
Several computer algorithms exist for the generation of tetrahedral models from open or 
closed surfaces represented by point or string data (Danovaro et al. 2003, Blandford et al. 
2003, Jones et al. 2003). 

In the example shown in this paper, upper and lower surface triangulations of a strata-
bound phosphate deposit were used to create a solid 3D tetrahedral model. Each indexed 
tetrahedron is represented by four integers that index a list of vertex coordinates. During block 
model grade estimation, the search ellipse (Fig. 1) was based on the shape of the tetrahedral 
model around each block. 

The main stage in the tetrahedral modelling process is the generation of the tetrahedral 
model from the roof and floor surface models. This process is based on the generation of 
tetrahedra from the triangle points contained in the triangulation models of the roof and floor 
surfaces. The points are joined together to form tetrahedral shapes alternating in direction.  
Each triangle in the original two surfaces becomes a face in some tetrahedron in the resulting 
tetrahedral model. In cases when this is not possible, points are inserted (e.g. the midpoint of a 
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triangle) to ensure that the original triangles do appear in the result. Further to this, each 
tetrahedron must not have all of its points coming from only one of the input surfaces. This 
requires internally rearranging the tetrahedra and possibly adding further points. The line 
segments generated pass through block model cells with one end point touching the hanging 
surface and the other end point touching the floor surface. The quality and resolution of the 
produced tetrahedral model depends on the point density of the limiting surfaces, especially in 
the areas where folding or faulting is more severe. 

 

 
Fig. 1. Tetrahedral model constructed between roof and floor of phosphate seam, distorted search 

ellipse following tetrahedral model shape and extents, and block model slice showing estimation 
based on distorted search ellipse. 

 
A line of minimum distance (true thickness) is calculated for each block cell. The line of 
minimum distance is then used to define a ‘mid-surface’ between the hanging surface and the 
floor surface. This surface, referred to as a track surface in tetrahedral modelling, is the path 
in three dimensions that the search ellipse follows, while maintaining the same ratio between 
the floor and hanging surface as a point selected from anywhere in the model. 

4. Variography and Kriging With a Tetrahedral Model 
4.1. Variography 
In variography the distances and angles of sample pairs are calculated in the tetrahedral model 
space and not the Cartesian space. Following the successful generation of the tetrahedral 
model each sample point is located inside one tetrahedron.  The coordinates in the tetrahedra 
are normalized so that the bottom surface has a Z of 0 and the top surface has a Z of 1.  The 
space between the two surfaces has the original Cartesian coordinates and any number of 
other coordinate systems based on the tetrahedra.  Different tetrahedral coordinate systems 
can be derived by starting at different places in the model. Neighbouring samples are found 
for each point, so that all pairs of points up to a radius of number of lags x lag size are found. 

When passing from one tetrahedron to another, the incident angle from the old 
tetrahedron is converted to the coordinate system of the new tetrahedron.  Keeping track of 
the apparent direction provides a bearing and distance.  The Z coordinate (relative distance 
between the two surfaces) provides the tetrahedral Z coordinate.  This process provides 
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coordinates relative to the starting point. The end result is a search cone for building sample 
pairs that is distorted and follows the track surface of the tetrahedral model. 

Once the sample pairs are constructed in the tetrahedral model space, experimental 
variograms are calculated as normal. The variogram lags and the azimuth and dip angles are 
referring now to the tetrahedral model space and not the original Cartesian space. All 
variogram models fitted and their parameters refer to the unfolded space. This must be 
considered when interpreting variography results produced using tetrahedral modelling.  
4.2. Kriging 
In grade estimation, the fundamental operation of unfolding is to list all samples inside an 
ellipsoid centred at a given coordinate.  So, given a coordinate, the tetrahedron containing that 
coordinate is located.  Samples from that tetrahedron are added, that are inside the search 
ellipsoid.  Neighbouring tetrahedra are searched for more samples which are inside the search 
ellipsoid.  This process is repeated until all relevant tetrahedra have been searched. 

5. Conclusions 

Tetrahedral modelling can be used in grade estimation and variography of deformed strata 
bound deposits, where mineralisation is controlled by a pair of structural surfaces. The search 
ellipse for variography and grade estimation is distorted from the usual regular ellipse to 
follow folded hanging and floor surfaces which represent the ore body geometry. The great 
benefit of using distorted search ellipses is that the block model stays in the position that it 
was created and the samples stay in their true position. Tools are provided to display the 
resultant tetrahedral model as a triangulation both in its whole form and as track surfaces for 
validation purposes. The results from the application of tetrahedral modelling in variography 
and grade estimation of a phosphate deposit confirmed the benefits of this approach. 
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