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Abstract

The way input data are presented to Artificial Neural Networks is one of the most important parameters controlling

their performance during the development and application stages. The choice of dimensions that form the input space

of a network (dimensionality) is very important and must be investigated as to its effects on the performance of artificial

neural network systems applied to grade estimation.

The study of these effects was achieved by configuring the available data in order to form different multidimensional

input spaces and testing on different datasets. The results obtained from the numerous tests in this study lead to a better

understanding of the behaviour of artificial neural network systems when facing different input space configurations

using the same data, and aid the choice of dimensions that will allow better representation of samples for their

development for grade estimation.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The main scope of the study presented in this paper,

was to investigate the effects of the choice of input

variables to the performance of Artificial Neural Net-

work (ANN) systems in grade estimation. The choice

and total number of inputs form a problem known in the

language of artificial neural networks as dimensionality.

The input variables, in a spatial interpolation problem

such as grade estimation, define the way the estimated

value is approached. In other words, as ANNs construct

the projection from the input vector space to the output

vector during training, it is clear that the input

parameters define to a large extent this projection and
e front matter r 2005 Elsevier Ltd. All rights reserve
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the whole approach to this problem. For example, if we

choose the n coordinates of the samples as input

parameters then grade is considered a function of

sample coordinates and the whole estimation problem

becomes a simple grade surface fitting in the n-

dimensional coordinate space.

The various ANN approaches to the problem of grade

estimation provided in the literature are very interesting

as they use different input parameters as well as different

ANN architectures and learning algorithms. They also

present differences in the quantity and quality of input

data used for ANN development. Examples of ANN

application to grade/reserves estimation are given by

Caiti and Parisini (1991), Clarici et al. (1993), Wu and

Zhou (1993), Burnett (1995), Kapageridis and Denby

(1998a, b), Cortez et al. (1998), Kapageridis (1999) and

Yama and Lineberry (1999).
d.
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1.1. Grade estimation and neural networks

Grade estimation is probably one of the most

important stages in reserve calculations.

Over the past 30 years, geostatistics became the most

established methodology for grade estimation. Since

1962 and the first introduction of G. Matheron, the field

of geostatistics has sustained significant development in

the mining industry, constantly producing better meth-

ods for solving the most complex cases of grade

distribution (David, 1977; Journel and Huijbregts,

1978; Clark, 1979; Krige, 1981; Isaaks and Srivastava,

1989). However, the expert knowledge required to

effectively apply these methods created a dependency

between the reliability of the derived results and the

skills and expertise of the person applying them.

An alternative approach that is considered particu-

larly in the last decade is the application of ANN

systems to grade estimation. ANN systems typically

approach grade variance and distribution as complex

functions in space, approached by their various compo-

nents. These components usually consist of ANN

architectures such as Radial Basis Function networks

(RBF) or Multi-Layer Perceptrons (MLP). After the

development of the ANN system with exploration data

follows the estimation of grade in unknown locations.

Estimation is usually performed on the basis of a block

or grid model. Generally, the aims of an ANN system

applied to grade estimation are the following:
1.
 fast and reliable grade estimation,
2.
 minimising the required assumptions on grade

distribution,
Fig. 1. RBF networ
3.
k a
minimising expert knowledge requirements, and
4.
 making the quality of the estimates independent of

the skills and knowledge of the person doing the

estimation.

For the purposes of this study we will concentrate on

one type of ANN, the RBF Networks, as they were

found to be outperforming other architectures when

applied to the problem of grade estimation (Kapager-

idis, 1999).
2. Radial basis function networks in grade estimation

2.1. General

RBF networks consist of three layers (input, hidden

and output layer) that are fully interconnected (Fig. 1).

The input layer connects the RBF network to the input

vector space. The unique hidden layer performs a non-

linear transformation between the input and hidden

space. In grade estimation, as in most RBF network

applications, the hidden space is multidimensional. The

output layer is linear, providing the network’s response

to the presented vectors (input signals) at the input layer.

These input vectors need to be normalised to ensure

proper operation of the RBF network.

Each processing unit of the hidden layer has a non-

linear function that forms an arbitrary ‘basis’ for the

input vectors as they are projected to the hidden layer

space. These functions are called radial basis functions.

The hidden layer processing units have a limited

receptive field, i.e. receive input vectors only from a
rchitecture.
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limited part of the input space. This characteristic of

RBF networks makes them a favourable architecture for

grade estimation. In general, the operation of an RBF

network is as follows:
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All processing elements of the hidden layer receive the

n-dimensional input vector after it is normalised.
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The centre of the radial non-linear basis function jj is

positioned on the vector of weight mj of each hidden

unit that also has an adjustable receptive field sj :
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The output of hidden unit j; hj ; is given as a radial

function of the distance between the input vector and

the unit’s weight vector

hj ¼ jjðjjx � mjjj=sjÞ (1)

(Haykin, 1999).
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The network output is the product of output vectors

of the hidden layer and the weight vector of each unit

k; lk

ykðxÞ ¼
X

hjðxÞlk. (2)

During training, the RBF network locates the basis

functions on random samples or uses clustering for the

choice of these locations. It is also quite common to

select these locations using unsupervised learning. In this

case, the hidden layer during function location acts as a

Kohonen layer (self-organised). Training proceeds with

the adjustment of the functions’ receptive fields in order

to minimise the output error. The overall network

performance is dependent on:
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their receptive field.

RBF networks have been successfully used for

function approximation (Broomhead and Lowe, 1988;

Moody and Darken, 1989; Girosi and Poggio, 1990;

Poggio and Girosi, 1990; Park and Sandberg, 1993). The

model of these networks has been inspired by the

characteristics of many biological neural network

systems as well as studies on interpolation with radial

basis functions (Powell, 1987) (Table 1).
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2.2. Input dimensionality

A very critical issue in the use of RBF networks as

function approximators is the dimension of the input

space and its effect on the intrinsic complexity of the

approximating function(s). It is generally accepted that

this complexity increases with the input dimensionality.

The space of approximating functions attainable with



ARTICLE IN PRESS
I.K. Kapageridis / Computers & Geosciences 31 (2005) 704–717 707
RBF networks becomes increasingly constrained as the

input dimensionality is increased (Haykin, 1999).

Increased dimensionality also has a great effect on the

computational overhead caused during training of the

RBF network. The dimension of the input space has a

direct control over the RBF network architecture—the

number of input nodes, the number of required RBFs,

and consequently, the number of linear weights between

hidden and output layer. Therefore, any increase in the

input dimensionality causes an increase in computer

memory and processing power requirements, and an

almost certain increase in development time due to the

increased number of unknown network parameters that

have to be fixed during training. One of the most

common ways of addressing high input dimensionality

for a given problem is to identify and ignore inputs that

do not contribute considerably to the output or to try to

combine inputs that present a high correlation. Another

way of reducing input dimensionality, which is not

always applicable though, is to try and break a complex

problem into a number of lower dimensionality pro-

blems that can be more effectively addressed using RBF

networks.
3. Input space configurations

Grade and reserve estimation usually involves the

prediction of various parameters that characterise an ore

deposit. Input data normally come in the form of

samples at known locations in three-dimensional (3D)

space. The majority of ANN systems developed for such

predictive tasks are based on the relationship between

the predicted parameters and sample locations. The

most common practice during development of training

datasets for an ANN is to produce pairs of input–out-

put, the input being the sample location and the output

being the required value of the predicted parameter. In

other words, most of the ANN systems treat the

unknown parameters estimation as a problem of

function approximation in the samples coordinate space.

Based on a number of examples in the literature and an

earlier research programme (Kapageridis, 1999), the

following ANN input spaces are considered.

3.1. For 2D samples

In many cases the available samples are unique along

the Z coordinate axis, as the parameter to be estimated

is considered to be non-varying along this axis. For

example, in a stratigraphic potash deposit, the KCl

grade shows small variation on the Z-axis. In such cases,

samples are usually located in space according to the

seam that they come from and their X–Y coordinates.

Estimation is consequently performed on a grid

model basis. The following input spaces can be used
with two-dimensional (2D) samples for grid model based

estimation.

3.1.1. X–Y coordinate space

This is probably the simplest space where the sample

coordinates are taken as the only input parameters to

the ANN while the estimation parameter value is taken

as the only output. The ANN is, in this case, trying to

create a projection for the X–Y coordinate space to the

estimation parameter space. The low dimensionality of

this problem leads inevitably to architectures with many

hidden units and sometimes in multiple hidden levels. In

the case of an RBF network this means a large number

of radial basis functions.

In order to achieve the required projection, the ANN

must have the appropriate number of weights between

the input and hidden level. It is therefore necessary,

given the low number of input nodes (2) to have

sufficient number of hidden units to form the necessary

number of weights. The number of required hidden units

is initially unknown and can only be found using various

architecture optimisation techniques such as Genetic

Algorithms. As this is the simplest configuration, it is

also the most common and there are plenty of examples

of this approach in the literature.

3.1.2. Triangulation neighbour samples space

Based on the triangulation method of interpolation,

the triangulation neighbour samples space is a very

simple approach to the presentation of samples to an

ANN system for grade estimation. The triangle method

has been used in the past as a simple geometrical method

for grade estimation prior to the extended use of

computers that we experience nowadays. According to

this method, three samples are selected that surround the

point of estimation and form a triangle as shown in Fig.

2A. Each point within the triangle is considered to have

a grade equal to the average grade of the samples that

form the triangle.

In the case of using such an input space for the

training of ANN systems, the grades of the samples that

form the triangle are taken as the input values while the

grade of the training sample is taken as the only output.

The triangles are formed excluding the training sample

from the triangulation procedure, which is based on the

Delaunay algorithm. Each training sample is contained

in a unique triangle that forms the input space. An

interesting variation of this input space is derived by

taking the distances of the neighbour samples as inputs

to the ANN. The low dimensionality of this space leads

to ANNs with many hidden units, especially when the

approximated grade surface is complex (Table 2).

3.1.3. Quadrant/octant search neighbour samples space

In this configuration, the space around the estimation

point is divided to four or eight sectors with a 901 or 451



ARTICLE IN PRESS

Table 2

Characteristics of considered input space configurations relative to the number of coordinates of the original samples

Input space configuration Number of

dimensions

Dimensions Samples

coordinate space

dimensions

Coordinates X–Y 2 Coordinates X–Y 2

Coordinates X–Y–Z 3 Coordinates X, Y and Z 3

Coordinates X–Y–Z and volume 4 Coordinates X, Y, Z and sample volume 3

Triangulation neighbour samples 6 Grade and distance of triangulation

neighbour samples

2

Tetrahedral model neighbour samples 8 Grade and distance of tetrahedral

neighbour samples

3

Quadrant sectors samples (single ANN) 8 Grade and distance of all quadrant sectors

samples

2

Quadrant/octant sectors samples (multiple

ANNs)

2 Grade and distance of one quadrant or

octant sector sample

2

Octant sectors samples (single ANN) 16 Grade and distance of all octant sectors

samples

2

3D Tetrahedral sectors samples (single

ANN)

3–144 Grade, distance and volume of all

tetrahedral sectors samples

3

3D Tetrahedral sectors samples (multiple

ANNs)

3 Grade, distance and volume of one

tetrahedral sector sample

3

Fig. 2. (a) Triangulation neighbour samples space configuration. (b) Quadrant/octant search neighbour samples space configuration

(fixed grid). (c) Quadrant/octant search neighbour samples space configuration (flexible).
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angle, respectively. The nearest neighbour sample is

selected from each sector (Fig. 2B). Depending on the

sampling scheme, samples can be arranged on a regular

grid or on random locations. In the case of a regular

grid, only the grades of the four or eight neighbour

samples are taken as ANN inputs. It is worth noticing

that when eight samples are selected, the four samples

on the diagonals are at a greater distance to the

estimation point from the other four.

As expected by the fixed position of the neighbour

samples, results using this configuration are usually very

good. However, the area of application for this

configuration is very limited as grade estimation is very

rarely performed using samples on such geometrically

specific locations. In most cases, samples are located in

arbitrary positions, and even though they can still be
located inside angular sectors, their distance from the

estimation point is non-constant. Therefore, it is

necessary to use this distance as yet another input to

the network (Fig. 2C).

This input space configuration gives more freedom

and can be used almost with any sampling scheme.

However, this comes at a price as it leads to a space with

up to 16 dimensions (eight samples ¼ eight grade-

s+eight distances ¼ 16 dimensions), which also in-

creases the minimum quantity of data required to

successfully develop the ANN. The architectures shown

in Fig. 3 require a sample in all sectors. If one of the

sectors is empty, this will make the complete presenta-

tion of data to the ANN impossible. This can happen

due to the sampling scheme or when we consider

estimation points close to the sampling area limits.
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3.2. For 3D samples

The addition of one more coordinate for the location

of samples in 3D space leads to more complex input

space configurations and network architectures. Addi-

tionally, approaching grade estimation in three dimen-

sions often leads to the need for treating samples as

volumes and not points. Therefore, sample volume and

estimation volume become parameters in the 3D space

that have to be included in the development and

application process of the ANN system. Estimation is

performed on block models and not grid models. Grid

models are not capable of dealing with the concept of

estimation volume in contrast with block models which

are built to represent volumes in 3D space. The

following input space configurations are considered for

ANN-based grade estimation with block models.

3.2.1. X–Y–Z coordinate space

This space is an extension to the X–Y coordinate

space in three dimensions. The addition of the third

coordinate Z to the ANN input enables its development

with data from deposits with grade varying in all three

dimensions due to the inherent complexity of the

deposition or any structural deformations (faults, folds,

etc.). Depending on whether samples and estimates are

considered as points or volumes, it is possible to add the

sample volume as an extra input to the ANN, increasing

the number of input space dimensions to four (Fig. 4).

This allows the use of samples from different sampling

methods and with different support for ANN develop-

ment without the need for sample compositing to

constant volume. This way the ANN learns the relation-

ship between volume and grade as well as the relation-

ship between sample location and grade.
Fig. 3. Possible ANN architectures with four (left) or eight (right) input
3.2.2. Tetrahedral neighbour samples space

This is probably the most uncommon case of an input

space and one that has never been used before in a

similar application. It is based on the construction of

tetrahedra from the available samples. The concept is

very similar to the triangulation neighbour samples

space discussed before and is, in essence, an extension of

the Delaunay triangulation algorithm in three dimen-

sions for the construction of a tetrahedral model.

All volumetric geometries can be represented in 3D

using a set of tetrahedra. Tetrahedral modelling uses the

tetrahedron as the basic unit for representing volumetric

geometry. A tetrahedral model is composed of indexed

3D tetrahedra, in contrast to the set of connected flat

triangles forming a standard triangulation.

Each training or estimation point is contained in a

tetrahedron built from surrounding samples (Fig. 5).

The grades of these samples, their distance from the

training/estimation point and their volume are used as

inputs to the ANN. The non-fixed orientation of each

tetrahedron leads to the construction of an ANN model

between the four sets of input values (grade, distance

and volume) and the training/estimation point grade

that does not consider the location of the samples and of

the training/estimation point. This model also does not

consider the direction of the vector between these points

and therefore leads to the assumption that grade

variance is independent of location and direction in

space.

3.2.3. 3D sectors neighbour samples space

Extending the quadrant/octant space to three dimen-

sions leads to the configuration shown in Fig. 6. The

space around each estimation point is divided into

tetrahedral sectors. The closest sample from each sector
samples. Neighbour sample grade and distance are taken as inputs.
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Fig. 4. Left: Possible ANN architecture for grade modelling in sample coordinates space. Right: output map example from ANN

trained in X–Y–Z coordinate sample space.

Fig. 5. Estimation point (centre) and selected neighbour

samples (corners) using a tetrahedral model built from available

samples.

Fig. 6. 3D space breakdown into tetrahedral sectors around an

estimation point.
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is selected and its grade, distance from the estimation

point and volume used as inputs to the ANN system. In

very rare cases there will be enough samples in all

directions to fill all 48 sectors formed. This means that

prior to the ANN development it is necessary to decide

which sectors to use or discard depending on the

sampling scheme and some analysis of sample pair

directions.

This configuration requires the use of more than one

ANN due to the high dimensionality. If we assume the

extreme case where there are enough samples to fill all 48
sectors, each one giving 3 inputs, this leads to a total of

144 inputs. In such a case, tens of thousands of samples

would be required to properly train the ANN. There-

fore, it is necessary to break down the problem to

smaller ones that can be more efficiently handled by a

single ANN and a common number of samples.

The simplest way of such breakdown is to use one

ANN for each sector. Depending on the directional

analysis of the available sample pairs, the number of

required ANNs will equal the number of sectors with

adequate sample pairs. Thus, each ANN is trained on
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Fig. 7. Left: possible ANN architecture for grade modelling based on neighbour samples. Right: output map from network trained

using neighbour sample grade and distance as inputs.
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sample pairs that lie approximately in the same

direction. In essence, each ANN constructs a model of

grade variance for a particular direction. An example of

such a network is shown in Fig. 7. This network has only

three inputs and thus requires a much lower number of

samples to train.

The use of multiple ANNs, one for each sector,

leads to multiple estimates for each estimation point

(their number depending on the estimation point

location relative to the sampling area). These estimates

need to be averaged to a final estimate for each

estimation point. One way to achieve this is using

another ANN that will take as inputs the individual

estimates and will produce the final estimate as an

output (Kapageridis, 1999).
4. Case studies

The case studies were split into two groups based on

the number of coordinate dimensions of the original

samples: 2D and 3D. The 2D samples were consi-

dered as points in space with a grade value assigned to

them and estimation was performed on a grid model

basis, i.e. point estimates. In the case of 3D samples,

their volume was also considered, while the estimates

were produced on a block model basis. Eight case

studies were performed, four from each group, and their

results are summarised at the end of this paper. Two of

these case studies are discussed briefly in the following

paragraphs.
4.1. Example study on 2D data—potash (KCl)

The data used in this study come from a large

stratigraphic potash deposit in the United Kingdom. A

total of 1429 samples from underground drillholes were

split into three groups, 50% for training, 25% for

validation and 25% for testing. Training data are used

to develop the networks and fix the free parameters of

their architecture such as RBF centre locations and the

weights between hidden and output layers. The valida-

tion set is not used for changing any of the free

parameters but to find the set of parameters that

generates the best possible validation error and ensure

good generalisation levels. Testing data are kept

completely out of the network development process

and are used to calculate the various estimation error

measures after network development is complete.

4.1.1. Test in the X–Y coordinate space

Initially an ANN was developed in the X–Y coordi-

nate space. The mean absolute error of estimation was

24.7% using this input space configuration. The best

validation error was achieved with 100 RBF units. As

shown in the scatter diagram of the estimates (Fig. 8),

this ANN tends to produce estimates close to the

average, slightly overestimating low-grade samples and

underestimating high grade ones.

4.1.2. Test in the triangulation neighbour sample space

The triangulation procedure produced 1397 training

samples, 699 validation samples and 698 estimation

testing samples. The best validation error was achieved
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Fig. 9. Scatter diagram of KCl estimates in triangulation

neighbour samples space.

Fig. 8. Left: ANN output map and RBF locations after training using potash (XY). Right: scatter diagram of potash estimates (XY).
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with just 15 RBF units. The mean absolute estimation

error was 24.96%, similar to the previous test. The

scatter diagram of the estimates produced with the

testing samples is shown in Fig. 9.
4.1.3. Test in the quadrant/octant search neighbour

samples space

The potash data produced 1398/699/698 samples with

the quadrant search and 1293/647/646 samples with the

octant for training, validation and testing, respectively.

The best validation error was achieved with 29 RBF
units (0.78 RMS) using the quadrant data and with 19

(0.81 RMS) using the octant. The mean absolute

estimation error was 23.02% and 24.52%, respectively.

The estimation was slightly more balanced in the case of

octant data as shown in the scatter diagrams below

(Fig. 10).
4.2. Example study on 3D data—marl

The marl deposit considered in this study is located

near Skopje (Former Yugoslavian Republic of Mace-

donia). The available samples come from 77 drillholes

providing a total of 3245 samples—1947 are used for

training, 973 for validation and 325 for testing. All

samples were of equal length and therefore sample

volume was not included in the input space configura-

tions.
4.2.1. Test in the X–Y–Z coordinate space

The available data were used for the development of

an ANN with three inputs (X–Y–Z). The best validation

error (0.87 RMS) was achieved with 143 RBF units. The

mean absolute estimation error was 7.83%. Fig. 11

shows a scatter diagram of the CaO estimates.
4.2.2. Test in the tetrahedral neighbour samples space

The tetrahedral model produced 1222 samples for

training, 611 samples for validation and 610 samples for

testing. The best validation error (0.65 RMS) was

achieved with 54 RBF units. The mean absolute

estimation error was 3.77%, significantly improved from

the previous test, as can be seen in Fig. 12.
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Fig. 10. Scatter diagrams of KCl estimation using data from quadrant and octant search.

Fig. 11. Scatter diagram of CaO estimates in X–Y–Z coordi-

nate space.

Fig. 12. Scatter diagram of CaO estimates in tetrahedral

neighbour samples space.

I.K. Kapageridis / Computers & Geosciences 31 (2005) 704–717 713
4.2.3. Test in the 3D sectors neighbour samples space

The final test in this study was performed with 552

training samples, 276 validation samples and 276

estimation testing samples in the 3D sectors neighbour

samples space. The fully developed ANN produced a

validation error of 1.11 RMS with 61 RBF units. The

mean absolute estimation error was further reduced to

3.48%. The quality of the produced estimates is shown

by the scatter diagram in Fig. 13.
5. Summary of results—conclusions

The main purpose of this study was the investigation

of the dimensionality effects on the perfor-

mance of ANN systems when applied to grade estima-

tion from exploration data. Dimensionality was

defined as the number and type of ANN input

parameters. Their application was defined as a

three-stage process: training, validation and estimation

testing. Accordingly, the effects of dimensionality
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to these development and application stages

were examined for the particular problem of grade

estimation.
Fig. 13. Scatter diagram of CaO estimates in 3D sectors

neighbour samples space.

Fig. 14. Graph of mean absolute estimat
The possible effects were investigated through a

number of tests on different deposits with varying

number of samples and different sampling schemes and

qualities of assays. The conclusions given in this section

are based on more than 24 case studies summarised in

the following table. The measures used to investigate the

effects of each input space configuration were the

following:
�

ion
The validation error of a fully developed ANN, i.e.

the error produced by the ANN on the samples used

during training to guide the adjustment of function

locations, the number of basis functions and their

receptive field.
�
 The number of RBF functions required in every case

to achieve the most accurate possible approach of the

validation samples. The optimum number of RBF

functions was found during development by increas-

ing the number of functions from a minimum of 5 to

a maximum of 200 and repeating training and

validation of the network.
�
 The estimation error of the ANN on the testing

samples that are not involved in the development of

the ANN. This was also presented graphically

through a scatter diagram of the estimated grades

versus the actual testing sample grades.
error versus number of inputs.
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relative to the number of input spaces.
Fig. 14 shows the estimation error in each study

Generally, a decrease in the estimation error is

observed as the number of input space dimensions

increases. This is more obvious in cases where the ANN

gives better results, while the exact opposite is observed

in cases were the error is particularly high. The decrease

in the estimation error is also more obvious in those

studies where 3D data are used. The following diagram

(Fig. 15) shows the number of RBF functions relative to

the number of input space dimensions for each study.

The number of RBF functions provides less consistent

results. In the Iron Ore, Potash, Marl and Copper (3D)

studies the number of required functions decreases as the

number of input space dimensions increases. This trend

follows the logic that the more inputs we have in an

ANN the more free parameters (weights) we have to

adjust during training and the less number of processing

elements we require in the ANN (in this case RBF

functions). However, in the Jura (Cd), Phosphate and

Copper (David) the exact opposite is observed: the

number of RBFs increases with the input space

dimensions. In these studies the estimation error was

very high and in some cases constant regardless of the
Fig. 15. Graph of number of RBF fun
input space used. In the studies with low quantity of

data (Jura, Copper-David, and Iron Ore) overfitting is

evident in the results and could possibly be avoided with

more data.

Examining the performance of the ANN systems in all

input space configurations leads to the conclusion that

there is no globally applicable configuration for all

deposit and sampling scheme types. Each deposit and

sampling scheme must be considered separately to find

the best configuration applicable. The following figure

(Fig. 16) gives an idea of the difficulty in the develop-

ment of ANN systems in the considered input space

configurations through the validation error in each

study.

The dimensionality of the input space can be a

problem in certain cases where the required mapping is

particularly complex and the quantity of available data

is low. Low quantity of data combined with a high

number of inputs can also lead to bad estimation results

as there is no sufficient information to effectively train

all of the network’s free parameters. In other cases, a

dimensionality increase combined with a sufficient

quantity of data leads to improvement of the estimates.

The above conclusions must be considered relative to the
ctions versus number of inputs.
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Fig. 16. Graph of validation error (RMS) versus number of inputs.
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chosen ANN architecture, the learning algorithm used

and the particular deposits examined.
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