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Abstract 7 

Experimental variography in three dimensions based on drillhole data and current modelling 8 

software requires the selection of particular directions (azimuth and plunge) and a basic lag 9 

distance. Variogram points are then calculated on distances which are multiples of that basic 10 

lag. As samples rarely follow a regular grid, directional and distance tolerances are applied in 11 

order to have sufficient pairs to calculate reliable variogram points. This process is adequate 12 

when drillholes follow a drilling pattern (even if not an exactly regular grid) but can be time 13 

consuming and hard when the drilling pattern is irregular or when drillhole orientations vary 14 

considerably. Having all variogram points being calculated on multiples of a fixed lag, and 15 

the same tolerance being applied throughout the range of distances used, can be very 16 

restrictive and a reason for considerable time wasting or even failure to calculate an 17 

interpretable experimental variogram.  The method discussed in this paper is using k-means 18 

clustering of sample pairs based on pair separation distance leading to a number of clusters 19 

each representing a different variogram point. This way, lag parameters are adjusted 20 

automatically to match the spatial distribution of sample locations and the resulting 21 

variogram is improved. Case studies are provided showing the benefits of this method over 22 

current fixed-lag experimental variogram calculation techniques. 23 

keywords: experimental variogram, k-means clustering, variogram modelling 24 

Introduction 25 

Drilling patterns, in mineral exploration programmes in particular, very rarely follow a 26 

strictly regular pattern. In some cases, this is due to practical issues causing a deviation from 27 

a constantly spaced pattern, while in other cases, it is the geometry of the targeted orebody 28 

envelope that requires a more flexible pattern to be followed. As exploration takes place in 29 

stages, in-fill drilling to increase the level of confidence in certain areas, also causes local 30 

changes in sample spacing. Drilling from underground workings is, in most cases, irregular 31 

and leads to extreme variation of sample spacing.  32 

Regardless of the reason and the degree of irregularity, when the sample spacing is 33 

not reasonably constant, the variography practitioner can face a very difficult task in finding 34 

a set of lag parameters that work for all variogram points in a particular direction. In most 35 

cases, parameters that work for the variogram points at smaller separation distances will not 36 



work for the points at larger separation distances and vice versa. The problem is further 37 

exaggerated by the way the lag parameters are applied by geostatistical software. 38 

Depending on how dynamic is the application of the parameters, it is possible to reach, after 39 

a considerable amount of time and effort, a set of parameters that works reasonably well for 40 

most variogram points. However, some of the geostatistical software is not dynamic at all in 41 

the application of lag and direction parameters. Setting of these parameters and running the 42 

computation of experimental variogram values are independent and take place separately, 43 

in which case, it can be almost impossible to find a set of parameters that will produce an 44 

interpretable experimental variogram. 45 

The problem of grouping pairs of samples that fall in a particular direction seems to 46 

be quite suitable for solving using a clustering algorithm like the k-means. The main concept 47 

is that pairs are selected to belong to a particular direction according to the vector they 48 

define and then they are grouped according to a criterion like the separation distance. This 49 

way, the user does not have to spend time and effort in finding appropriate lags and 50 

tolerances that work in that particular direction. A separate clustering run will have to be 51 

performed for each direction considered. The directions themselves could be chosen using a 52 

similar approach to better match the most sampled directions, but this is something that 53 

most geostatistics practitioners would probably like to keep control of, and computationally 54 

it would require a lot more time to perform. 55 

Current State of Variogram Calculation 56 

The information provided in this section is based on the experience and knowledge of the 57 

author and does not necessarily cover every geostatistical software package and method 58 

available to the geostatistics practitioner. However, the author believes that most of the 59 

available packages follow, in some way, one of the paradigms discussed here. 60 

Variogram Points Based on Multiples of a Basic Lag and an Absolute Lag 61 

Tolerance 62 

Most geostatistical software packages follow this concept. As shown in Figure 1 (for a 2D 63 

case), for a particular direction chosen, a search area is defined using some direction 64 

tolerance which can be controlled both horizontally and vertically. Some packages use the 65 

same direction tolerance in both cases while others allow for separate tolerances to be 66 

applied for azimuth and plunge. These tolerances are allowed to expand the search area as 67 

the separation distance increases up to a maximum distance (bandwidth) from the direction 68 

vector. This way, the search area begins as a cone of circular or elliptical section (depending 69 

on whether the azimuth and plunge tolerances are different), and then becomes a cylinder 70 

of similar section to the cone, once the maximum distance from the direction vector is 71 

reached. Some packages allow for a separate maximum distance to be applied horizontally 72 

and vertically.  73 

 The search area is split into multiple search windows which are defined using a basic 74 

lag and a lag tolerance. Each search window is centred on a distance along the direction 75 

vector derived by a multiple of the basic lag plus some lag offset. The extents of the search 76 



window are controlled by the lag tolerance, which, in most cases, is fixed to an absolute 77 

distance value and does not change with distance. For example, if the basic lag is 50m and 78 

the tolerance is 15m, then the search window at the sixth variogram point will be centred at 79 

6x50 = 300m and start at 285m and stop at 315m (for a zero lag offset).  The sample pairs 80 

that fall within the search area are checked against the search windows and they get 81 

grouped into different variogram points according to the corresponding separation distance. 82 

As a percentage of the separation distance, the tolerance decreases with every 83 

multiple of the basic lag, leading to an ever decreasing number of pairs found at higher 84 

distances. In the previous example, for the first variogram point, 15m is 30% of the 50m 85 

window distance, 15% of the 100m, 10% of the 150m, and so on. Of course, this is not the 86 

only reason for the number of pairs to decrease with distance - it will happen inevitably as 87 

we reach the maximum distance between drillholes. However, it is probably the only reason 88 

or factor that can be controlled using a different approach of searching for pairs, i.e. a 89 

different way of defining the search windows. It should be noted that for variogram 90 

smoothing purposes, some of the packages allow overlapping of the search windows, in 91 

which case, some sample pairs are used in more than one variogram points. 92 

Some of the main examples of geostatistical packages (the list is far from comlete) 93 

that follow the approach described above in two or three dimensions are Isatis (Bleines et al, 94 

2004), GSLIB (Deutsch et al, 1992) including the implementation for standard directional 95 

variography in Vulcan 3D software (Maptek Pty Ltd), GEO-EAS (Englund et al, 1991), SGeMS 96 

(Remy et al, 2011), and VarioWin (Pannatier, 1996). In some of these software packages, a 97 

file containing all pairs of samples and their separation vector parameters (distance, 98 

azimuth, plunge) is formed before the variogram points are calculated (called a pair 99 

comparison file). 100 

 101 



Figure 1: Standard sample pair selection in two dimensions, used in most current 102 

geostatistical software. 103 

Variogram Points Based on 3D Block Search Windows 104 

This method is based on orthogonal blocks forming a 3D model centred on the origin of 105 

variography polar coordinates – the model always has an odd number of blocks along X, Y 106 

and Z. The centroid of each block together with the origin defines a different vector with its 107 

own azimuth and plunge. The block extents control the lag, azimuth and plunge tolerance 108 

but in a way quite different to the technique described in the previous section. Each of the 109 

sample pairs is checked against each block, with one sample at the model origin. If the 110 

second sample of the pair falls is nearer the centroid of a particular block, the pair is used to 111 

calculate the variogram value for that block (Figure 2). Once all pairs are assigned to 112 

particular blocks, the block variogram values are calculated and stored in the model. The end 113 

result is a three-dimensional variogram map that can be displayed using a number of 114 

different methods (contours, slices, shells, etc.) in two or three dimensions. In addition to 115 

the variogram value (different variogram types are available such as standard 116 

semivariogram, general relative, pairwise relative, etc.), some other useful information is 117 

calculated and store in each block, including the number of pairs, average distance, average 118 

head and tail values of the pairs. 119 

 120 



Figure 2: Simple 2D representation of the way sample pairs are selected for the calculation 121 

of a particular block variogram value in 3D block variography. Blocks are coloured by 122 

variogram value and can potentially reveal the orientation of anisotropy. 123 

 The quality of the produced variogram map is controlled by the block sizes and 124 

tolerances along X, Y, and Z relative to the sample spacing. Block sizes work similarly to the 125 

lag sizes in the previous technique. The tolerances along X, Y, and Z work relative to the 126 

block centroids (blocks can be allowed to overlap when checked against sample pairs). As an 127 

approach, it is more suitable to investigating the existence and orientation of geometrical 128 

(ellipsoidal) anisotropy, and finding the directions that work better with the available 129 

sampling pattern, rather than forming the basis for variogram modelling. This technique, 130 

called cube variography, is available in the more recent versions of Vulcan 3D (Maptek Pty 131 

Ltd). 132 

 As a technique, it is still not particularly dynamic in its application, as the block 133 

model has to be calculated first using a parameter file that needs to be modified and called 134 

again if a different block setup is necessary. However, it is an improvement in the visual 135 

aspect of checking the effects of different block sizes (i.e. the effect of different lag sizes) in 136 

different directions, potentially leading to a better lag setup in directional variography. The 137 

orientation of the anisotropy ellipsoid can be easily determined and the number of 138 

directional variograms to calculate can be potentially reduced. At its current form, this 139 

technique can work as a preparatory step before the common directional variography 140 

described in the previous section. 141 

Variable Lag Experimental Variogram Calculation Based on k-142 

means Clustering 143 

Concept 144 

The techniques described in the previous sections require a time consuming trial and error 145 

procedure to be followed in order to reach a lag setup that will produce a reasonably 146 

interpretable experimental variogram. The information to reach a good lag setup is already 147 

available in the sample pairs for any particular direction, even for irregular sampling 148 

patterns, but it is probably too much for the practitioner to handle. Figure 3 shows a 149 

histogram of sample pairs based on separation distance for the data of the first case study. 150 

Some separation distances present much higher pair frequencies than others, and, together 151 

with some very low frequency distances, they can define a group of pairs that could produce 152 

a reliable experimental variogram point with sufficient number of pairs. For example, such a 153 

point could be considered between 250 and 300 meters around the peak at 280. Other 154 

points can be identified in a similar manner. The end result would be a set of experimental 155 

variogram points defined at variable separation distances, not multiples of a basic lag, and 156 

with varying distance tolerances – a concept called variable lag variography (VLV) from this 157 

point on (Figure 4). These points would have sufficient pairs to be considered reliable even 158 

at higher separation distances.  159 



 Following such logic in a manual way, by examining a histogram like the one in 160 

Figure 3, could be beneficial but would still require a fair amount of time and work. It would 161 

be better if these groups of pairs can be identified by an automated procedure, as 162 

unsupervised as possible. The author has chosen k-means clustering for its speed and 163 

simplicity. It is not necessarily the best method for this problem and still requires some 164 

minimum input by the user. There are many similar clustering methods and variations, and it 165 

is one of the aims for future work to identify one that is more appropriate and will produce 166 

the most optimum results. However, k-means proved sufficient to demonstrate the validity 167 

of the VLV concept. IBM SPSS Statistics, the software package used for clustering in this 168 

study, provides two more clustering methods, the TwoStep Cluster Analysis, and the 169 

Hierarchical Cluster Analysis (IBM SPSS Statistics Base 20, 2011). 170 

 171 

 172 

Figure 3: Histogram of sample pairs for a particular direction based on separation distance in 173 

the case of the underground drilling pattern of case study 1.  174 

 175 

Variography parameters using k-means clustering in VLV are represented by the resulting 176 

clustering information: 177 

 Lag offset: the average separation of the first cluster (first variogram point). 178 

 Lag: the average separation of each cluster (each variogram point) - different for 179 

each variogram point, not a multiple of a standard distance. 180 

 Lag tolerance: the maximum distance of the pairs classified in a specific cluster from 181 

that cluster's center - different for each variogram point, not a fixed value. 182 

 Pair count: the number of pairs classified in each cluster. 183 



Figure 4 shows how these parameters define search windows in the case of VLV in two 184 

dimensions. 185 

 186 

Figure 4: Proposed variable lag sample pair selection based on k-means clustering of pairs. 187 

k-means Clustering 188 

k-means clustering is a method originally used in signal processing, commonly used for 189 

cluster analysis in data mining. k-means clustering groups n observations into k clusters, with 190 

each observation assigned to the cluster with the nearest mean. The term "k-means" was 191 

introduced by MacQueen in 1967. The standard algorithm was first proposed by Lloyd in 192 

1957 as a technique for pulse-code modulation. Forgy published essentially the same 193 

method (Forgy, 1965), which is why it is sometimes referred to as Lloyd-Forgy. A more 194 

efficient version was proposed and published by Hartigan and Wong in 1975 and 1979.  195 

It is an iterative algorithm that is performed in steps. Before any iteration, the 196 

clusters are initially centred on an equal number of observations. These observations can be 197 

chosen using different methods. Iterations involve two steps. In the first step, each 198 

observation is assigned to the cluster whose mean yields the least within-cluster sum of 199 

squares. The second step involves the calculation of the new means to be the centroids of 200 

the observations in the new clusters. The algorithm converges when there is no change in 201 

the assignments. 202 

The implementation of the k-means clustering algorithm in SPSS (called QUICK 203 

CLUSTER) can handle large numbers of cases. It attempts to identify relatively homogeneous 204 

groups of cases based on selected characteristics. As with most k-means clustering 205 



algorithms, it requires that the number of clusters is specified a priori. The initial cluster 206 

centres can be manually selected if required. There are two methods available for classifying 207 

cases, either updating cluster centres iteratively or classifying only. Information such as 208 

cluster membership, distance information, and final cluster centres can be stored after 209 

clustering. Optionally, a variable can be specified whose values will be used to label case-210 

wise output. The first iteration of the algorithm involves three steps (as described in IBM 211 

SPSS Statistics 20 Algorithms, 2011): 212 

Step 1 - Initial Cluster Centre Selection 213 

Selection of the initial cluster centres involves a single pass of the data. The values of the 214 

first NC (number of requested clusters) cases are selected as cluster centres, and the 215 

remaining cases are reprocessed as follows: 216 

a) If minid(xk,Mi) > dmn and d(xk,Mm) > d(xk,Mn), then xk replaces Mn. If minid(xk,Mi) > dmn 217 

and d(xk,Mm) < d(xk,Mn), the xk replaces Mm; that is, if the distance between xk and its 218 

closest cluster mean is greater than the distance between the two closest means 219 

(Mm and Mn), then xk replaces either Mm or Mn, whichever is closer to xk. 220 

b) If xk does not replace a cluster mean in (a), a second test is made: 221 

 Let Mq be the closest cluster mean to xk. 222 

 Let Mp be the second closest cluster mean to xk. 223 

 If d(xk,Mp) > minid(Mq,Mi), then Mq = xk; 224 

That is, if xk is further from the second closest cluster’s centre than 225 

the closest cluster’s centre is from any other cluster’s centre, 226 

replace the closest cluster’s centre with xk. 227 

where, NC is the number of requested clusters, Mi the mean of the ith cluster, xk the vector 228 

of the kth observation, d(xi,xj) is the Euclidean distance between vectors xi and xj, and dmn is 229 

the distance between the two closest means (mini,jd(Mi,Mj). After one pass through the 230 

data, the initial means of all NC clusters are set. 231 

Step 2 – Initial Cluster Centres Updating 232 

Starting with the first case, each case in turn is assigned to the nearest cluster, and the 233 

cluster means are updated. The initial cluster centre is included in this mean. The updated 234 

cluster means are considered as the classification cluster centres. 235 

Step 3: Cases Assigning to Nearest Cluster 236 

The third pass through the data assigns each case to the nearest cluster, where distance 237 

from a cluster is the Euclidean distance between that case and the (updated) classification 238 

centres. Final cluster means are then calculated as the average values of clustering variables 239 

for cases assigned to each cluster. Final cluster means do not contain classification centres. 240 

 When the number of iterations is greater than one, the final cluster means in step 3 241 

are set to the classification cluster means in the end of step 2, and QUICK CLUSTER repeats 242 

step 3 again. The algorithm stops when either the maximum number of iterations is reached 243 

or the maximum change of cluster centres in two successive iterations is smaller than ε (the 244 

convergence criterion) times the minimum distance among the initial cluster centres. 245 



Application of k-means Clustering to Sample Pairs Grouping for 246 

Variography 247 

As it was mentioned before, in order to test the proposed methodology, two software 248 

packages were used: Vulcan 3D, a mine planning package, and IBM SPSS Statistics, a package 249 

used for statistical analysis. Vulcan was used to provide the samples database environment 250 

and general variography tools for displaying and modelling. Vulcan’s Isis database module 251 

provides all the necessary functions for manipulating a drillhole or other sample database, 252 

while the Envisage graphical environment provides advanced 3D tools for graphically 253 

displaying samples. Vulcan’s geostatistical functionality is based on GSLIB (Deutsch et al, 254 

1992). IBM SPSS Statistics was used to provide the k-means clustering algorithm. 255 

 A script written by the author in Perl and utilising Vulcan’s Lava Perl modules was 256 

developed to take care of all the sample pairs preparation work and calling SPSS for 257 

clustering. Each direction is processed separately, i.e. the script works in one direction at a 258 

time. Lava modules give access to all Vulcan database and model structures as well as the 259 

graphical environment through a Perl script. The script allows the user to select the samples 260 

database and required sample location and grade fields, as well as the directional 261 

parameters for the searching. Currently, it allows the application of an azimuth and plunge 262 

with separate tolerances and a bandwidth that is applied in both (Figure 5). 263 

 264 

Figure 5: Specification panel from the script responsible for generating the pairs file for a 265 

particular direction and direction tolerances and running SPSS for clustering with k-means. 266 

 267 



The script goes through the following steps when it runs: 268 

1. User selects the variogram direction and directional tolerances to apply (horizontal, 269 

vertical, and related bandwidth). A maximum separation distance can also be 270 

applied to speed up the pair formation process. 271 

2. User also selects the required number of variogram points – this controls the 272 

number of clusters that will be used by the k-means algorithm. 273 

3. Composites database is scanned and composites pairs are formed and stored to a 274 

file (Table 1). The 3D separation distance, squared difference of composites grades 275 

(semi), and squared difference divided by pair mean (pairwise) are also stored. 276 

4. An SPSS syntax file is generated referencing the pairs file. 277 

5. SPSS is called using the syntax file and k-means clustering is performed. The Lava 278 

script waits for SPSS to complete the clustering process before it continues. The 279 

steps performed by SPSS are the following: 280 

i. Opens the pairs file. 281 

ii. Executes k-means clustering (QUICK CLUSTER) based on pair separation 282 

distance. Two new columns are added to the pairs data table – the resulting 283 

cluster number for each pair (QCL_1), and the distance from the cluster centre 284 

(QCL_2). 285 

iii. Aggregates the resulting table based on cluster numbers (QCL_1). 286 

iv. Calculates average separation distance, maximum distance from cluster 287 

centre (QCL_2_max), sum of squared differences (semi), sum of pairwise 288 

squared differences and number of pairs (N_BREAK) for each cluster. 289 

v. Sorts the aggregated table by average separation distance in ascending order 290 

(Table 2). 291 

vi. Saves the aggregated table to a text file. 292 

6. The saved table from SPSS is read by the Lava script and is converted to a Vulcan 293 

compatible variogram file that can be opened and displayed in Envisage. 294 

Table 1: Part of a pairs data table after clustering with k-means in SPSS (from case study 1, 295 

azimuth 90o, plunge 20o). 296 

pair sample1 sample2 distance hordev verdev semi pairwise 

P0 H-314-16.622 H-316-11.79 6.963741379 0.095184207 0.358188481 1161.650889 0.471699959 

P1 H-314-16.622 H-316-10.8 7.551314654 0.725616456 0.129110504 321960.9171 3.218301598 

P2 H-315-5.539 H-314-2.778 3.194344221 0.441519213 0.079610374 185731.6932 2.380098251 

P3 H-315-5.539 H-314-1.789 3.982700968 0.153695571 0.239766397 3180251.622 3.483169808 

P4 H-315-5.539 H-316-1.89 4.498334581 0.486475155 0.003702789 8043661.738 3.662662936 

P5 H-315-5.539 H-314-0.8 4.846072843 0.761050168 0.372952977 34481440.97 3.831501105 

P6 H-315-5.539 H-316-0.9 5.056332663 0.347141651 0.247642419 295832122.5 3.941245206 

P7 SD-08-43 H-15-52.247 6.678770995 0.301930063 1.11746493 9846435.237 3.643351118 

P8 SD-08-43 H-15-53.226 6.050389822 0.223973326 0.492179109 10400625 3.652345679 

P9 SD-08-43 H-15-54.205 5.523861783 0.781942854 0.116150433 21137751.05 3.751232685 

P10 M-21-19.7 H-112-51.75 45.89995157 2.255489159 0.611567557 1745181.029 3.191502971 

P11 M-21-19.7 H-112-52.757 46.57318349 1.510416662 0.821022109 1745181.029 3.191502971 

P12 M-21-19.7 H-112-53.764 47.25828136 0.761767907 1.026430026 1745181.029 3.191502971 



P13 M-21-19.7 H-112-54.771 47.95348424 0.011819937 1.227332402 1745181.029 3.191502971 

P14 M-21-19.7 H-112-55.779 48.66086482 0.7403636 1.425085903 4041768.472 3.438658745 

P15 M-21-19.7 H-112-56.786 49.37828845 1.494646484 1.618298387 9740971.829 3.624044192 

P16 M-21-19.7 H-112-57.793 50.10516554 2.252006088 1.80931579 9740971.829 3.624044192 

P17 SD-08-42 H-15-54.205 5.46253659 0.493360014 0.837717765 20908497 3.671776097 

P18 SD-08-44 H-15-52.247 6.677113448 0.05490167 0.150186911 9609398.609 3.474857844 

P19 SD-08-44 H-15-53.226 6.15910586 0.506035101 0.467754473 10156969 3.487799746 

P20 SD-08-44 H-15-51.268 7.291150869 0.580861371 0.782508272 10384403.13 3.492891538 

 297 

Table 2: Aggregates table sorted by cluster average separation distance in SPSS (from case 298 

study 1, azimuth 90o, plunge 20o). 299 

QCL_1 distance_mean QCL_2_max semi_sum pairwise_sum N_BREAK semivariogram pairwise 

3 8.966 8.368 4.93E+10 1755.058 2382 2.07E+07 0.737 

2 19.581 5.389 6.50E+10 2308.253 2595 2.50E+07 0.890 

4 30.360 8.892 4.04E+10 1515.350 1446 2.80E+07 1.048 

1 48.192 8.909 6.94E+10 2572.557 2420 2.87E+07 1.063 

6 63.216 13.971 5.64E+10 1825.052 1865 3.03E+07 0.979 

5 91.347 14.005 1.43E+09 105.705 222 6.46E+06 0.476 

Case Studies 300 

Two case studies using data from real deposits are presented in this paper, selected from a 301 

number of examples used to test the VLV approach. Due to the sensitivity of the data, the 302 

discussion on its origin and characteristics is kept at a minimum.  303 

Experimental variograms were calculated using standard fixed lag variography in 304 

Maptek Vulcan 3D, and using variable lag variography with the developed script and IBM 305 

SPSS Statistics. The comparison was made on two variography modes, semivariograms and 306 

pairwise relative variograms as these are the only modes currently supported by the script. 307 

An effort was made to calculate experimental variogram points using both approaches up to 308 

the same maximum distance and for the same number of points to make the comparison 309 

easier and more objective.  310 

A small number of directions were selected in each case to calculate variograms. 311 

There are minor differences in the application of azimuth/plunge tolerances and bandwidths 312 

in the two approaches compared, as the script does not necessarily replicate the way Vulcan 313 

3D forms and selects pairs from particular directions. This has some effect to the difference 314 

in the number of pairs reported by the two approaches. 315 

The variogram cloud for each direction considered was constructed to gain some 316 

understanding for the produced experimental variogram points. The variogram cloud is 317 

commonly used as a diagnostic tool in geostatistics and can help detect the presence of 318 

outlier points affecting the produced values in the calculation of experimental variograms 319 

(Chauvet, 1982, Isaaks et al. 1989, Cressie, 1991). It is essentially a scatter plot of sample pair 320 

squared differences against their separation distance (Figures 8 and 15). Other forms of 321 



variogram clouds have been proposed and used, such as the square-root differences cloud 322 

(Cressie, 1991). The variogram cloud can be used to detect (Plonner, 1999): 323 

 Global outliers which are clearly away from the main group of the data. 324 

 Local outliers which are more difficult to trace but differ from their neighbouring 325 

values and result in high squared differences for small distances. 326 

 Small areas of non-stationarity in cases were a cluster of points presents a larger 327 

variability than surrounding points. 328 

Case Study 1 – Tungsten Deposit 329 

Data for the first case study come from a tungsten deposit contained within a number of 330 

tabular, bedding-conformable skarn horizons. Data includes both underground and surface 331 

drilling. The mountainous terrain of the area and the geometry of the underground workings 332 

resulted in a fairly irregular sampling pattern. Drillhole samples from one of the tabular 333 

horizons were used to produce equal length (1m) composites of WO3 values. A total of 5,466 334 

composites were produced and formed the basis for the first case study. Figure 6 shows the 335 

spatial distribution of these composites in plan view. 336 

 A number of directions were selected to calculate the experimental variogram in 337 

semivariogram and pairwise relative mode. These are shown in Figure 6. At 90o and 135o 338 

azimuth, two different plunges were tried, 20o and -20o, and 0o and 10o respectively.  339 

 340 



Figure 6: Plan view of underground drillhole sample composites from a particular zone of a 341 

tungsten deposit. Irregularity of the pattern is mostly due to drilling following underground 342 

openings and drillholes fanning out from almost the same collar location. 343 

For each of the directions, a histogram of selected pairs was produced based on the 344 

separation distance to help decide the number of clusters for k-means clustering, i.e. the 345 

number of variogram points. The same number of points was used (more or less) in standard 346 

fixed lag variography to make comparison of the two approaches easier and more 347 

conclusive. The histograms were examined visually in order to establish groups of pairs 348 

around frequency peaks. In some cases this was possible while in others not quite. For 349 

example, in the middle right histogram (Azimuth 90o, Plunge -20o) of Figure 7, the number of 350 

peaks is approximately eight. Thus, during k-means clustering, the number of required 351 

clusters was set to eight. However, other histograms were not as clear and presented a 352 

much more continuous distribution of pairs along the separation distance bins. In those 353 

cases, the number of clusters was set according to the number of drillholes along the 354 

particular direction up to the maximum distance considered. Clearly, a direct improvement 355 

to the VLV approach would be a different clustering algorithm that can set the number of 356 

clusters automatically using some criteria (not necessarily just the pair separation distance). 357 

 358 



Figure 7: Histograms of pairs based on separation distance for each of the six directions 359 

considered in case study 1. 360 

The variogram clouds presented in Figure 8 show the presence of a considerable amount of 361 

outliers affecting most distances in each direction considered in this study. The pattern of 362 

outliers is mostly uniform in all directions, with the exception of the largest distances of 363 

45o/-10o and 90o/20o where they are absent. This was reflected in the last couple of points of 364 

the corresponding fixed lag variogram graphs (Figure 9) and the last point of the 365 

corresponding variable lag variogram graphs (Figure 10). 366 

 367 

Figure 8: Variogram clouds showing the distribution of pair squared difference values along 368 

distance for the six directions considered in case study 1. 369 

 370 

Standard fixed lag variography and VLV were performed in all six directions. The lag setups 371 

used by the two approaches for each direction are summarised in Table 3. The number of 372 

pairs found for each point is also included in the table. In most cases, VLV achieves a much 373 



more balanced distribution of pairs along the various points, even at higher separation 374 

distances.  375 

Table 3: Variable lag setup defined by k-means clustering and fixed lag setup defined 376 

manually for each of the four directions of case study 1. 377 

 

Variable Lag Fixed Lag 

Point Lag 
Lag 

Tolerance 
Number 
of Pairs 

Point Lag 
Lag 

Tolerance 
Number 
of Pairs 

A
zi

m
u

th
 0

, P
lu

n
ge

 -
2

0
 1 57.73 56.67 5262 1 50 20 7495 

2 93.70 17.98 7702 2 100 20 20132 

3 128.34 23.98 7914 3 150 20 10096 

4 176.31 23.98 4585 4 200 20 13693 

5 220.41 28.15 8274 5 250 20 8022 

6 276.74 28.13 6384 6 300 20 7586 

7 330.01 26.58 4363 7 350 20 10706 

8 361.65 38.34 3027 8 400 20 3607 

   
  

    
  

  

A
zi

m
u

th
 4

5
,  

P
lu

n
ge

 -
1

0
 

1 29.29 28.29 2211 1 50 20 2577 

2 71.97 21.32 4607 2 100 20 5179 

3 109.69 20.17 4651 3 150 20 5318 

4 150.18 31.45 5932 4 200 20 1171 

5 213.09 31.43 1623 5 250 20 133 

6 278.82 19.90 288 6 300 20 126 

   
  

    
  

  

A
zi

m
u

th
 4

5
,  

P
lu

n
ge

 -
1

0
 

1 8.97 8.37 2382 1 20 10 4227 

2 19.58 5.39 2595 2 40 10 1108 

3 30.36 8.89 1446 3 60 10 1668 

4 48.19 8.91 2420 4 80 10 246 

5 63.22 13.97 1865 5 100 10 202 

6 91.35 14.01 222 6 120 10 0 

   
  

    
  

  

A
zi

m
u

th
 9

0
,  

P
lu

n
ge

 -
2

0
 

1 39.78 37.93 4834 1 50 20 3077 

2 90.89 25.55 4802 2 100 20 4974 

3 125.06 22.41 3007 3 150 20 2733 

4 169.95 22.43 3193 4 200 20 2904 

5 207.97 18.99 2319 5 250 20 1460 

6 264.20 27.31 2197 6 300 20 1185 

7 310.20 31.72 958 7 350 20 766 

8 373.64 31.51 1748 8 400 20 692 

   
  

    
  

  

A
zi

m
u

th
 1

3
5

,  

P
lu

n
ge

 0
 

1 24.26 24.10 10470 1 50 20 14352 

2 57.04 23.74 17363 2 100 20 9186 

3 104.54 26.54 11232 3 150 20 7008 

4 157.62 28.10 9312 4 200 20 6811 

5 213.85 28.10 9926 5 250 20 6043 

6 268.69 27.42 7321 6 300 20 6998 

7 319.53 25.61 9051 7 350 20 7255 

8 370.75 29.22 9025 8 400 20 4477 

   
  

    
  

  

A
zi

m
u

th
 1

3
5

,  

P
lu

n
ge

 1
0

 

1 22.48 22.33 7161 1 50 20 9040 

2 60.46 22.26 11820 2 100 20 7982 

3 105.00 28.42 9247 3 150 20 8073 

4 161.86 28.42 11463 4 200 20 15059 

5 205.83 23.51 16326 5 250 20 8841 

6 252.85 26.04 10796 6 300 20 5254 

7 304.95 31.46 7146 7 350 20 2392 

8 367.95 32.05 3388 8 400 20 3307 

 378 



Figures 9 and 10 present the standard semivariogram in each direction produced by 379 

fixed lag variography and VLV respectively. It must be noted that lag tolerances in the case 380 

of fixed lag variography were set after some testing while VLV lag tolerances were set 381 

automatically by the clustering process. Figures 11 and 12 present the pairwise relative 382 

variogram in the same manner. In both variogram modes and in most cases, the points 383 

produced by VLV define a smoother, easier to interpret, graph.  384 

 385 

 386 

Figure 9: Standard semivariograms produced using fixed lag variography for case study 1. 387 

 388 

 389 



Figure 10: Standard semivariograms produced using variable lag variography for case study 390 

1. 391 

 392 

Figure 11: Pairwise relative variograms produced using fixed lag variography for case study 393 

1. 394 

 395 



Figure 12: Pairwise relative variograms produced using variable lag variography tools for 396 

case study 1. 397 

 398 

Running the Perl script to perform VLV required considerably more time than 399 

running normal variography tools in Vulcan (a few minutes compared to a few seconds). This 400 

is due to the fact that Perl is an interpreted language, and pairs were written to and read 401 

from an ASCII file to save memory.  402 

Case Study 2 – Silver Vein Deposit 403 

Data for the second case study include 573 composites of approximately 1m length from a 404 

near vertical silver vein. Two separate drilling campaigns (original exploration plus infill 405 

drilling) resulted in some irregularity of the sampling pattern – considerably less though 406 

compared to the first case study. Figure 12 shows a side view of the data and the selected 407 

directions for experimental variogram calculation.  408 

 409 

Figure 13: Side view of samples from a vertical silver vein showing a fair amount of 410 

irregularity in spacing, partly due to infill drilling. 411 

 412 

Histograms were constructed with the pairs according to separation distance as in case 413 

study 1. These reflected the much more regular sampling pattern (Figure 14). Particularly the 414 

one along the strike direction (azimuth 137o, plunge 0o) presents exactly the original drillhole 415 

spacing (50m) through the corresponding peaks. Thus, in the second case study, it was much 416 

easier to decide the number of required clusters or variogram points to calculate. 417 

 The lag setup used in fixed lag variography and the setup configured with VLV are 418 

shown in Table 4. The differences in the way directional tolerances are applied in the two 419 

approaches were quite evident in the number of pairs reported. VLV still produced a slightly 420 

more balanced distribution of pairs on the different variogram points, but not to the extent 421 

shown in the first case study as the sampling pattern is much more regular this time and it is 422 

much easier for a fixed lag setup to follow it. 423 

 The variogram clouds for the four directions considered are shown in Figure 15. In 424 

this case study, the distribution of outliers is not as uniform across the range of distances 425 

(with the exception of direction 137o/0o which follows the drilling pattern more closely). This 426 



means that there could be room for improvement of the semivariogram graphs by trimming 427 

of outliers at appropriate levels. 428 

 429 

Figure 14: Histograms of pairs based on separation distance for each of the four directions 430 

considered in case study 2. 431 

 432 

 433 



Figure 15: Variogram clouds showing the distribution of pair squared difference values along 434 

distance for the four directions considered in case study 2.  435 



Table 4: Variable lag setup defined by k-means clustering and fixed lag setup defined 436 

manually for each of the four directions of case study 2. 437 

  

Variable Lag Fixed Lag 

Point Lag 
Lag 

Tolerance 
Number 
of Pairs 

Point Lag 
Lag 

Tolerance 
Number 
of Pairs 

A
zi

m
u

th
 0

, 

P
lu

n
ge

 -
9

0
 1 28.12 13.47 70 1 50 15 1303 

2 56.72 23.33 156 2 100 15 658 

3 103.61 28.14 105 3 150 15 865 

4 169.33 30.07 104 4 200 15 310 
 

  
   

  
  

  

A
zi

m
u

th
 1

3
7

, P
lu

n
ge

 4
5

 1 36.31 21.33 82 1 50 20 290 

2 78.45 28.70 772 2 100 20 545 

3 136.14 28.75 1091 3 150 20 845 

4 190.22 28.42 617 4 200 20 496 

5 247.18 30.99 359 5 250 20 188 

6 309.48 81.06 143 6 300 20 116 

  
   

7 350 20 19 

        8 400 20 25 
 

  
   

  
  

  

A
zi

m
u

th
 1

3
7

, P
lu

n
ge

 0
 1 51.22 49.31 941 1 50 20 824 

2 99.86 23.91 1862 2 100 20 1743 

3 149.26 26.03 1598 3 150 20 1472 

4 201.66 24.33 2536 4 200 20 2352 

5 251.72 23.26 1798 5 250 20 1606 

6 300.28 24.30 2991 6 300 20 2876 

7 352.94 24.47 2294 7 350 20 2219 

8 394.03 20.42 1111 8 400 20 2635 
 

  
   

  
  

  

A
zi

m
u

th
 1

3
7

, P
lu

n
ge

 -
4

5
 

1 70.52 66.98 968 1 50 20 437 

2 134.33 31.82 1923 2 100 20 575 

3 180.65 25.21 1132 3 150 20 1462 

4 231.15 26.24 1038 4 200 20 799 

5 283.99 31.32 1029 5 250 20 709 

6 346.71 53.28 630 6 300 20 665 

  
  

  7 350 20 421 

        8 400 20 185 

 438 

Figures 16 and 17 show the standard semivariogram produced by both approaches. 439 

The benefit of using VLV over fixed lag variography is evident as the produced points define 440 

a very clear structure. In pairwise relative mode (Figures 18 and 19) the improvement is 441 

smaller but still significant. The time required to run VLV was considerably less compared to 442 

the first case study as the number of composites and possible pairs was much smaller. The 443 

actual clustering process in IBM SPSS Statistics required a couple of seconds in both case 444 

studies for each of the directions. 445 

  446 



 447 

Figure 16: Standard semivariograms produced using fixed lag variography for case study 2. 448 

 449 

 450 

Figure 17: Standard semivariograms produced using variable lag variography for case study 451 

2. 452 

 453 

 454 



 455 

Figure 18: Pairwise relative variograms produced using fixed lag variography for case study 456 

2. 457 

 458 

Figure 19: Pairwise relative variograms produced using variable lag variography tools for 459 

case study 2. 460 

Conclusions 461 

This paper presented an alternative method for calculating experimental variograms based 462 

on variable lags defined through a clustering process. The development of this method was 463 

motivated by the excessive time and effort required in setting up lags and tolerances for 464 

variography in cases of irregular sampling patterns. K-means clustering was considered as 465 

the algorithm for clustering sample pairs based on separation distance. A script was 466 

developed that runs through a mine planning package, which creates the pairs, runs the 467 

clustering process through a statistical software package and produces the experimental 468 

variogram in two variography modes (semivariogram and pairwise relative). The method 469 

was tested on data from a number of real deposits, two of which are presented as case 470 



studies in this paper. Normal variography was also performed using standard geostatistical 471 

tools in order to evaluate the benefits of the variable lag variography (VLV) concept. An 472 

effort was made to keep all variography parameters (other than lag and lag tolerance) the 473 

same to make the comparison easier and more effective. 474 

 The results from calculating experimental variograms using both approaches have 475 

shown that VLV can relieve the practitioner from the trouble of finding an appropriate lag 476 

setup and at the same time produce experimental variograms which are smoother and 477 

easier to interpret in cases of irregular sampling patterns. More testing is required with 478 

other datasets to have a better understanding of the effects of using VLV. 479 

Some input is still required to VLV as the k-means algorithm does not define the 480 

number of clusters automatically. It is one of the aims for future work to develop a method 481 

to find the optimum number of clusters (or variogram points) based on a given set of pairs. 482 

Currently, VLV is using separation distance as the sole criterion for clustering. Other criteria 483 

are considered, such as the squared difference of the pair sample grades. The effect of such 484 

criteria needs to be evaluated. 485 

 The script that was developed to perform VLV will also be rewritten to speed up the 486 

pair formation process. An implementation of the k-means algorithm will also be included in 487 

the scrip so that an external statistical package is no longer required, if such development 488 

does not have a negative effect on the speed of clustering.  489 
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