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ABSTRACT

Resource estimation of a marble deposit is commonly based on sample data from surface and/or
underground drillholes, characterized as to several visual, physical, and mechanical properties
[Kapageridis et al. (2018)]. Drilling campaigns in marble quarries tend to be highly irregular as
to their spatial density and drillhole orientation, as drilling is driven by the progress of
extraction, and the need to expose good quality marble. This process introduces bias to resource
estimation and can lead to overestimation of resources, if samples are not treated first for their
spatial clustering. The clustered distribution of samples means that areas of good marble quality
are potentially oversampled, while areas of poor quality have fewer to no samples leading to a
sample distribution that is not representative of the resource that is to be estimated. Several
sample declustering methods exist and have been applied to mineral resources estimation
[Isaaks and Srivastava (1989); Deutsch and Journel (1998)]. The procedure described in this
paper is based on cell declustering to derive sample weights that can reduce the effect of bias
caused by irregularly spaced sampling during resource estimation of a marble deposit.
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1. INTRODUCTION

The company that provided our study data is Iktinos Hellas, one of many marble
quarrying companies active in Northeastern Greece. It is among the leading companies
in the field of marble in the country. Iktinos is a vertically integrated company with
four privately owned marble quarries, three cutting and processing factories, a local
sales network and an ever-growing sales network abroad. The Laboratory of Mining
Informatics and Machine Learning Applications of the University of Western



Macedonia has been supporting Iktinos in developing and implementing solutions for
marble resources estimation and quarry design and modelling since 2014. The marble
deposit used in the present study, is in the VVolakas area near the city of Drama (Figure
1). Volakas is hosting several significant marble quarries, each with different marble
qualities.

Figure 1. Location of the Volakas quarry.
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Depending on the actual marble products produced and market needs, some
general categories are commonly used, such as Al, A2, AB, B, C, and waste. These
general categories or classifications reflect marble mass visual and structural
parameters which can also be different from one quarry to another. These parameters
include marble characteristics such as background colour and appearance, texture,
presence of veins, discolouration, and discontinuities of different scale. Parametrisation
of marble samples and classification to one of the categories is performed by
experienced personnel and is based on samples much smaller in area than the blocks of
marble which are potentially exploited. The use of standard estimation and modelling
software tools in estimating marble quarry reserves poses a few challenges, as the
available information is mostly qualitative. Generalisation of qualities was also
considered necessary, focusing on 3 products (A, AB, and B), as the limited sampling
does not allow for a more detailed analysis of resources and reserves to the original
quality categories produced by the quarry. Reported waste quantities are the remaining
bench volume, which cannot be estimated using the available sampling and the
limitations set by the reserve categories.



2. EXPLORATION AND PRODUCTION DATA CHARACTERISTICS

2.1 Exploration Data

The provided dataset consists of 150 surface and underground exploration drillholes
(vertical and horizontal) and 1899 production slabs giving a total of 3344 6m composite
samples (Figure 2). In the marble deposit of the present study, the following parameters
were identified and used to characterise the marble features that are significant to its
quality classification:

Figure 2. 3D view of exploration and production data overlayed by a model of the

surface Volakas quarry.
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Figure 3. Examples of Volakas marble type and background categories.
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Table 1. Tectonic parameters and values.

Parameter TECTO1 | TECTO2 | TECTO3 | TECTO4

Orientation 40/40 210/70 320/55 20/80
Parameter value 1 2 3 4
Discontinuities 0 1 2 3 or more

2.2 Production Data

Marble slabs extracted from the quarry are georeferenced and recorded as to the
percentages of each quality produced (A, AB, B, Waste). Slabs are represented as
vertical drillholes with a single interval (sample). This data is used as a reference
distribution for normal score transformation and a benchmark for block estimates.
Production data is combined with exploration composite samples during block
estimation.



3. MARBLE RESOURCE ESTIMATION

Interpolation of marble quality indicator values is normally performed using ordinary
kriging on the basis of a block model. Similar computerised estimation efforts are
reported by [Forlani et al. (2000)], [Careddu et al. (2010)], and [Abdollahisharif et al.
(2012)]. The estimated volume is divided into blocks of the same size. Block
dimensions are configured based on the marble volumes (slabs) that are extracted
separately at the given quarry. Samples are selected around each block using search
ellipsoids which are oriented according to the geological features of the particular
deposit.

Declustering weights calculated with cell declustering are stored in the
composite samples database. These weights are combined with ordinary kriging
weights during block model estimation:

e Without the application of declustered weights, the estimated grade is:
(OK_weightl x gradel) + (OK_weight2 x grade2) + ... (1)
e With the application of declustered weights, the estimated grade is:

[(OK weightl x DC_weightl x gradel) + (OK_weight2 x DC_weight2 x
grade2) +...]/ [(OK_weightl x DC_weightl) + (OK_weight2 x
DC_weight2) + ...] (2

4. DECLUSTERING

Drilling campaigns in marble quarries tend to be highly irregular as to spatial density
and drillhole orientation, as drilling is driven by the progress of extraction, and the need
to expose good quality marble. This process introduces bias to resource estimation and
can lead to overestimation of resources, if samples are not treated first for their spatial
clustering. The clustered distribution of samples means that areas of good marble
quality are potentially oversampled, while areas of poor quality have fewer to no
samples leading to a sample distribution that is not representative of the resource that
is to be estimated.

4.1 Purpose and Methods

There are different methods available to treat the spatial clustering of data, with the
most common ones being the following:



o Cell declustering: it is the most common method applied in geostatistics. It is
insensitive to the boundary locations and for this reason is seen as more robust
than polygonal declustering.

e Polygonal declustering: it is based on the construction of polygons of
influence around each of the sample data. These polygons of influence are
described by all midpoints between each neighbouring sample data.

e Kriging weight declustering: kriging of the area of interest is performed and
the weights applied to each conditioning data are summed and then
standardised.

4.2 Cell Declustering

The volume covered by the sample data is divided into 3D rectangular sections for
declustering called cells. Each sample selected for declustering receives a weight
inversely proportional to the number of samples that fall within the same cell.
Therefore, closely spaced samples are assigned lower weights and sparse samples are
assigned higher weights. The calculated global mean from cell declustering depends on
the size of the cells.

If the cells are very small, then each sample will fall into its own group and all
samples will receive equal weights. If the cells are as large as the global area, then all
samples will fall into one group and will again receive equal weights. Somewhere
between these two extremes is the appropriate cell size. A range of different cell sizes
are examined and a graph of the declustered mean vs. cell size is produced to aid the
selection of the cell size (Figure 4).

Figure 4. Selection of appropriate cell size using a graph of the declustered mean vs.
cell size.
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Anisotropy in the data can be accounted for when calculating declustering
weights. In the case of cell declustering, this is achieved using different aspect ratios
between X, Y and Z directions, i.e. cells are 3D blocks of different size along X, Y and
Z. The appropriate ratios might not be obvious (particularly for the Z axis) and
experiment with multiple configurations is usually required.

Table 2. Comparison statistics between original (clustered) and declustered marble
quality percentages.

A% A% AB% AB% B% B%
clustered |declustered| clustered [declustered| clustered |declustered

Mean 6.11 5.18 17.14 14.35 10.71 10.11
Standard
deviation 16.32 14.10 25.93 21.06 20.95 16.21
\Variance 266.26 198.91 672.57 443.32 438.88 262.85
CV 2.67 2.72 1.51 1.47 1.96 1.60
Max 100.00 100.00 100.00 100.00 100.00 100.00
Min 0.00 0.00 0.00 0.00 0.00 0.00
Skewness 3.32 3.90 1.66 2.02 2.67 2.77
Kurtosis 11.67 17.30 2.01 4.32 7.43 10.08
Range 100.00 100.00 100.00 100.00 100.00 100.00

5. CONCLUSIONS

Preferential sampling commonly leads to sample distributions not representative of the
underlying phenomenon. Declustering methods can be applied to address this issue.
Cell declustering is one of the more robust methods available. Multiple tests might be
necessary to decide the “optimum” cell size for the calculation of declustering weights.
The effects of applying declustering weights to the original samples for resource
estimation need to be carefully examined. Standardisation of quality assignment to
drillhole core samples and production marble slabs is also an area where significant
improvement is required.

HHEPIAHYH

H extiumon amofepdtov evog kortdouatog papudpov Paciletar cvvhbog oe
OEYUOTOANTTIKG dedOUEVE OO  EMPAVEIOKEG M/Kal VIOYEEG YEWMTPNOGEIS, 7OV
yopoaktnpifovtol ®G TPog OPOPEG ONTIKEG, (UOIKEG KOl HNYOVIKEG 1O10TNTEG
[Kapageridis x.d. (2018)]. Ta yemtpnTiKd TPOYPAUUOTO GE AOTOMEID WOPUAPOV
telvouv vo glval eEaIpeTikd aKOvVOVIOTO MG PO TN YOPIKN TUKVOTNTO Kol TOV
TPOCAVATOAGHO TOV YEMTPNGEWDY, KaODC o1 yewTproelc kabodnyovviol and v



Poodo g e£OpvENg Kot TNV avaykn €kBeonc kaAng ToldTNTOG Hoprapov. Avty i
Swdkaocia elcdyel pepoinyia oty ektipnon anobepdtov Kot pmopet va 0dnynoet 6
VIEPEKTIUNGOT TOVG, €GV Ta deiypato dev voPAndovy mpata oe enelepyocia yuo ™
Y®PKN opadomoinon tove. H opadomoinuévn katavopun Tov SElypdT®V onpaivel 0Tt
yiveton vepPoAikn) SeryHATOANYIN TOV TEPLOYDV KOANG TOLOTNTAS LAPHAPOL, EVA O1
TEPLOYES KOAKNG TOLOTNTAG £0VV AyoTepa Emg KaBdrov delypata, yeyovog mov odnyel
0€ KOTOVOUN OEYHAT®OV Tov Ogv €lvol OVIITPOCHOTEVTIKY] TOL OmOBEUATOS 7OV
mpokertan va ektiunfel. Yndpyovv apketég pébodol amocvotadonoinong derypudtov
TOL £XOVV EQOPUOOTEL GTNV EKTiUNGN opvKT®OV TOpwV [Isaaks and Srivastava (1989);
Deutsch xot Journel (1998)]. H éiodikocio mov meptypapetol 6TV Tapovco. £pyacio
Baciletar oty amocvotadonoinon keAoD Yo v eéaywyn Poapmdv deiypatog mov
UTOPOvV VO LELDGOVY TNV EMIOPACT TNG LEPOANYING TTOV TPOKOAEITAL OO OKAVOVIOTT
OEYUATOANYI0 KOTA TNV EKTIUNGT TOP®V EVOC KOITAGLLOTOC LOPIAPOL.
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